Lopes dos Santos, Raquel A; De Deckker, Patrick; Hopmans, Ellen C; Magee, John W; Mets, Anchelique; Sinninghe Damsté, Jaap S; Schouten, Stefan (2013): Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.823146, Supplement to: Lopes dos Santos, RA et al. (2013): Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nature Geoscience, 6(8), 627-631, https://doi.org/10.1038/ngeo1856
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
A substantial extinction of megafauna occurred in Australia between 50 and 45 kyr ago, a period that coincides with human colonization of Australia. Large shifts in vegetation also occurred around this time, but it is unclear whether the vegetation changes were driven by the human use of fire-and thus contributed to the extinction event-or were a consequence of the loss of megafaunal grazers. Here we reconstruct past vegetation changes in southeastern Australia using the stable carbon isotopic composition of higher plant wax n-alkanes and levels of biomass burning from the accumulation rates of the biomarker levoglucosan from a well-dated sediment core offshore from the Murray-Darling Basin. We find that from 58 to 44 kyr ago, the abundance of plants with the C-4 carbon fixation pathway was generally high-between 60 and 70%. By 43 kyr ago, the abundance of C-4 plants dropped to 30% and biomass burning increased. This transient shift lasted for about 3,000 years and came after the period of human arrival and directly followed megafauna extinction at 48.9-43.6 kyr ago. We conclude that the vegetation shift was not the cause of the megafaunal extinction in this region. Instead, our data are consistent with the hypothesis that vegetation change was the consequence of the extinction of large browsers and led to the build-up of fire-prone vegetation in the Australian landscape.
Coverage:
Median Latitude: -36.059939 * Median Longitude: 138.413681 * South-bound Latitude: -36.960700 * West-bound Longitude: 137.406500 * North-bound Latitude: -29.121914 * East-bound Longitude: 147.052866
Date/Time Start: 2003-02-20T19:33:00 * Date/Time End: 2003-02-20T19:33:00
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Size:
3 datasets
Download Data
Datasets listed in this publication series
- Lopes dos Santos, RA; De Deckker, P; Hopmans, EC et al. (2013): (Table S1) Age determination of sediment core MD03-2607. https://doi.org/10.1594/PANGAEA.823144
- Lopes dos Santos, RA; De Deckker, P; Hopmans, EC et al. (2013): Reconstruction of a continuous C3-C4 plant vegetation record based on stable carbon isotopic composition of long-chain n-alkanes derived from sediment core MD03-2607. https://doi.org/10.1594/PANGAEA.823119
- Lopes dos Santos, RA; De Deckker, P; Hopmans, EC et al. (2013): (Table S2) Weighted mean isotopic composition of C29-C33 n-alkanes from soils from the Murray Darling River Basin. https://doi.org/10.1594/PANGAEA.823145