Cléroux, Caroline; deMenocal, Peter B; Arbuszewski, Jennifer; Linsley, Braddock K (2013): Stable isotope record of planktonic foraminifera of the Atlantic Ocean [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.822133, Supplement to: Cléroux, C et al. (2013): Reconstructing the upper water column thermal structure in the Atlantic Ocean. Paleoceanography, 28(3), 503-516, https://doi.org/10.1002/palo.20050
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2013-11-14 • DOI registered: 2013-12-12
Abstract:
The thermal structure of the upper ocean (0-1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from d18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past.
Coverage:
Median Latitude: 5.039827 * Median Longitude: -26.166129 * South-bound Latitude: -25.150000 * West-bound Longitude: -49.430000 * North-bound Latitude: 42.850000 * East-bound Longitude: -5.733000
Date/Time Start: 1956-09-19T00:00:00 * Date/Time End: 1983-03-29T00:00:00
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Size:
4 datasets
Download Data
Datasets listed in this publication series
- Cléroux, C; deMenocal, PB; Arbuszewski, J et al. (2013): (Table 1) Age determination of Atlantic Ocean near-surface sediments. https://doi.org/10.1594/PANGAEA.821489
- Cléroux, C; deMenocal, PB; Arbuszewski, J et al. (2013): Stable carbon and oxygen isotope ratios of Neogloboquadrina dutertrei from sediment core tops along a meridional transect in the Atlantic Ocean. https://doi.org/10.1594/PANGAEA.822130
- Cléroux, C; deMenocal, PB; Arbuszewski, J et al. (2013): Stable carbon and oxygen isotope ratios of Globorotalia truncatulinoides from sediment core tops along a meridional transect in the Atlantic Ocean. https://doi.org/10.1594/PANGAEA.822132
- Cléroux, C; deMenocal, PB; Arbuszewski, J et al. (2013): Stable carbon and oxygen isotope ratios of Globorotalia tumida from sediment core tops along a meridional transect in the Atlantic Ocean. https://doi.org/10.1594/PANGAEA.822129