Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Moore, John C; Beaudon, Emilie; Kang, Shichang; Divine, Dmitry V; Isaksson, Elisabeth; Pohjola, Veijo A; van de Wal, Roderik S W (2012): Mean chemical characteristics and volcano signatures of ice cores from Belukha, the Everest and three Svalbard sites [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.817167, Supplement to: Moore, JC et al. (2012): Statistical extraction of volcanic sulphate from nonpolar ice cores. Journal of Geophysical Research, 117(D3), D03306, https://doi.org/10.1029/2011JD016592

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.
Coverage:
Median Latitude: 56.000200 * Median Longitude: 49.623100 * South-bound Latitude: 28.030000 * West-bound Longitude: 13.270000 * North-bound Latitude: 79.970000 * East-bound Longitude: 86.980000
Date/Time Start: 1995-01-01T00:00:00 * Date/Time End: 2005-01-01T00:00:00
Comment:
Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: