Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Goldhammer, Tobias; Brunner, Benjamin; Bernasconi, Stefano M; Ferdelman, Timothy G; Zabel, Matthias (2011): Geochemistry of sediment cores from METEOR cruise M76/1b [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.810103, Supplement to: Goldhammer, T et al. (2011): Phosphate oxygen isotopes: Insights into sedimentary phoshorus cycling from the Benguela upwelling system. Geochimica et Cosmochimica Acta, 75(13), 3741-3756, https://doi.org/10.1016/j.gca.2011.04.006

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP.
Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi.
We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.
Related to:
Kraft, Angelina; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin (2013): Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area|. FEMS Microbiology Ecology, 84(1), 86-97, https://doi.org/10.1111/1574-6941.12039
Lagostina, Lorenzo; Goldhammer, Tobias; Røy, Hans; Evans, Thomas W; Lever, Mark A; Jørgensen, Bo Barker; Petersen, Dorthe G; Schramm, Andreas; Schreiber, L (2015): Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre. Environmental Microbiology Reports, 7(3), 404-413, https://doi.org/10.1111/1758-2229.12264
Coverage:
Median Latitude: -25.800083 * Median Longitude: 13.165886 * South-bound Latitude: -28.000000 * West-bound Longitude: 9.999833 * North-bound Latitude: -24.053167 * East-bound Longitude: 14.389167
Date/Time Start: 2008-04-14T07:53:00 * Date/Time End: 2008-05-09T14:03:00
Size:
22 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12801-1. https://doi.org/10.1594/PANGAEA.746095
  2. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12801-3. https://doi.org/10.1594/PANGAEA.746097
  3. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12802-1. https://doi.org/10.1594/PANGAEA.746098
  4. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12802-3. https://doi.org/10.1594/PANGAEA.746099
  5. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12802-4. https://doi.org/10.1594/PANGAEA.746100
  6. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12802-7. https://doi.org/10.1594/PANGAEA.746101
  7. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12803-1. https://doi.org/10.1594/PANGAEA.746102
  8. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12803-3. https://doi.org/10.1594/PANGAEA.746103
  9. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12803-6. https://doi.org/10.1594/PANGAEA.746104
  10. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12806-1. https://doi.org/10.1594/PANGAEA.746105
  11. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12806-8. https://doi.org/10.1594/PANGAEA.746106
  12. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12807-1. https://doi.org/10.1594/PANGAEA.746107
  13. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12807-2. https://doi.org/10.1594/PANGAEA.746108
  14. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12808-4. https://doi.org/10.1594/PANGAEA.746109
  15. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12808-5. https://doi.org/10.1594/PANGAEA.746110
  16. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12809-2. https://doi.org/10.1594/PANGAEA.746111
  17. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12810-1. https://doi.org/10.1594/PANGAEA.746119
  18. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12810-2. https://doi.org/10.1594/PANGAEA.746112
  19. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12811-2. https://doi.org/10.1594/PANGAEA.746114
  20. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12811-3. https://doi.org/10.1594/PANGAEA.746115
  21. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12815-1. https://doi.org/10.1594/PANGAEA.746116
  22. Goldhammer, T; Brunner, B; Bernasconi, SM et al. (2011): Geochemistry of sediment core GeoB12815-2. https://doi.org/10.1594/PANGAEA.746117