Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Jonkers, Lukas; van Heuven, Steven; Zahn, Rainer; Peeters, Frank J C (2013): Planktonic foraminifera fluxes and stable isotope ratios in the Irminger Sea. PANGAEA, https://doi.org/10.1594/PANGAEA.807458, Supplement to: Jonkers, L et al. (2013): Seasonal patterns of shell flux, d18O and d13C of small and large N. pachyderma (s) and G. bulloides in the subpolar North Atlantic. Paleoceanography, 28(1), 164-174, https://doi.org/10.1002/palo.20018

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Past water column stratification can be assessed through comparison of the d18O of different planktonic foraminiferal species. The underlying assumption is that different species form their shells simultaneously, but at different depths in the water column. We evaluate this assumption using a sediment trap time-series of Neogloboquadrina pachyderma (s) and Globigerina bulloides from the NW North Atlantic. We determined fluxes, d18O and d13C of shells from two size fractions to assess size-related effects on shell chemistry and to better constrain the underlying causes of isotopic differences between foraminifera in deep-sea sediments. Our data indicate that in the subpolar North Atlantic differences in the seasonality of the shell flux, and not in depth habitat or test size, determine the interspecies Delta d18O. N. pachyderma (s) preferentially forms from early spring to late summer, whereas the flux ofG. bulloides peaks later in the season and is sustained until autumn. Likewise, seasonality influences large and small specimens differently, with large shells settling earlier in the season.
The similarity of the seasonal d18O patterns between the two species indicates that they calcify in an overlapping depth zone close to the surface. However, their d13C patterns are markedly different (>1 per mil). Both species have a seasonally variable offset from d13CDIC that appears to be governed primarily by temperature, with larger offsets associated with higher temperatures. The variable offset from d13CDIC implies that seasonality of the flux affects the fossil d13C signal, which has implications for reconstruction of the past oceanic carbon cycle.
Related to:
Jonkers, Lukas; Brummer, Geert-Jan A; Peeters, Frank J C; van Aken, Hendrik M; de Jong, M Femke (2010): Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic. Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849
Coverage:
Median Latitude: 59.280300 * Median Longitude: -39.393100 * South-bound Latitude: 59.247500 * West-bound Longitude: -39.657800 * North-bound Latitude: 59.345700 * East-bound Longitude: -38.863700
Date/Time Start: 2003-08-31T00:00:00 * Date/Time End: 2007-05-19T00:00:00
Minimum DEPTH, water: 2750 m * Maximum DEPTH, water: 2750 m
Event(s):
IRM_1 * Latitude: 59.345700 * Longitude: -38.863700 * Date/Time: 2003-08-31T00:00:00 * Elevation: -3000.0 m * Location: North Atlantic * Method/Device: Trap, sediment (TRAPS)
IRM_3 * Latitude: 59.247700 * Longitude: -39.657800 * Date/Time: 2005-09-21T00:00:00 * Elevation: -3000.0 m * Location: North Atlantic * Method/Device: Trap, sediment (TRAPS)
IRM_4 * Latitude: 59.247500 * Longitude: -39.657800 * Date/Time: 2006-09-05T00:00:00 * Elevation: -3000.0 m * Location: North Atlantic * Method/Device: Trap, sediment (TRAPS)
Comment:
Stable isotope data for small N. pachyderma (s) in samples IRM-1 06-07, 09-10 and 12-13 are average values from both collecting cups.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEvent
2Sample code/labelSample labelJonkers, Lukas
3DATE/TIMEDate/TimeGeocode
4Date/time endDate/time endJonkers, Lukas
5DEPTH, waterDepth watermGeocode
6Neogloboquadrina pachyderma sinistral, fluxN. pachyderma s flux#/m2/dayJonkers, LukasCalculated150-200 µm
7Neogloboquadrina pachyderma sinistral, δ18ON. pachyderma s δ18O‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
8Neogloboquadrina pachyderma sinistral, δ13CN. pachyderma s δ13C‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
9Globigerina bulloides, fluxG. bulloides flux#/m2/dayJonkers, LukasCalculated150-250 µm
10Globigerina bulloides, δ18OG. bulloides δ18O‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
11Globigerina bulloides, δ13CG. bulloides δ13C‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
12Turborotalita quinqueloba, fluxT. quinqueloba flux#/m2/dayJonkers, LukasCalculated150-250 µm
13Turborotalita quinqueloba, δ18OT. quinqueloba δ18O‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
14Turborotalita quinqueloba, δ13CT. quinqueloba δ13C‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253150-250 µm
15Neogloboquadrina pachyderma sinistral, fluxN. pachyderma s flux#/m2/dayJonkers, LukasCalculated250-315 µm
16Neogloboquadrina pachyderma sinistral, δ18ON. pachyderma s δ18O‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253250-315 µm
17Neogloboquadrina pachyderma sinistral, δ13CN. pachyderma s δ13C‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253250-315 µm
18Globigerina bulloides, fluxG. bulloides flux#/m2/dayJonkers, LukasCalculated250-315 µm
19Globigerina bulloides, δ18OG. bulloides δ18O‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253250-315 µm
20Globigerina bulloides, δ13CG. bulloides δ13C‰ PDBJonkers, LukasMass spectrometer Finnigan MAT 253250-315 µm
Size:
668 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML