Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

März, Christian; Vogt, Christoph; Schnetger, Bernhard; Brumsack, Hans-Jürgen (2011): Geochemistry and mineralogy of Eocene-Oligocene sediments of IODP Hole 302-M0002A. PANGAEA, https://doi.org/10.1594/PANGAEA.786428, Supplement to: März, C et al. (2011): Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the Central Arctic Ocean (IODP Expeditrion 302). Earth and Planetary Science Letters, 310(3-4), 526-537, https://doi.org/10.1016/j.epsl.2011.08.025

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Coverage:
Latitude: 87.921180 * Longitude: 139.365010
Date/Time Start: 2004-08-19T00:00:00 * Date/Time End: 2004-08-19T00:00:00
Event(s):
302-M0002A (ACEX-M2A) * Latitude: 87.921180 * Longitude: 139.365010 * Date/Time: 2004-08-19T00:00:00 * Elevation: -1209.0 m * Penetration: 270.1 m * Recovery: 214.68 m * Location: Arctic Ocean * Campaign: Exp302 (Arctic Coring Expedition, ACEX) * Basis: Vidar Viking * Device: Drilling/drill rig (DRILL)
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )