Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Delacour, Adelie; Frueh-Green, Gretchen L; Frank, Martin; Gutjahr, Marcus; Kelley, Deborah S (2008): Geochemistry of Atlantis Massif crust. PANGAEA, https://doi.org/10.1594/PANGAEA.780727, Supplement to: Delacour, A et al. (2008): Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology, 254(1-2), 19-35, https://doi.org/10.1016/j.chemgeo.2008.05.018

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Coverage:
Median Latitude: 30.102473 * Median Longitude: -42.086729 * South-bound Latitude: 30.001667 * West-bound Longitude: -42.130700 * North-bound Latitude: 30.168650 * East-bound Longitude: -42.000000
Event(s):
304-U1309B * Latitude: 30.168460 * Longitude: -42.119000 * Elevation: -1642.3 m * Recovery: 46.73 m * Campaign: Exp304 (Oceanic Core Complex Formation, Atlantis Massive 1) * Basis: Joides Resolution * Device: Drilling/drill rig (DRILL) * Comment: 20 cores; 101.8 m cored; 45.9 % recovered; 0 m drilled; 101.8 m penetrated
304-U1309D * Latitude: 30.168650 * Longitude: -42.119000 * Elevation: -1644.9 m * Recovery: 243.69 m * Campaign: Exp304 (Oceanic Core Complex Formation, Atlantis Massive 1) * Basis: Joides Resolution * Device: Drilling/drill rig (DRILL) * Comment: 77 cores; 380.7 m cored; 64 % recovered; 20.5 m drilled; 401.3 m penetrated
305-U1309D * Latitude: 30.001667 * Longitude: -42.000000 * Elevation: -1644.9 m * Recovery: 799.65 m * Campaign: Exp305 (Oceanic Core Complex Formation, Atlantis Massive 2) * Basis: Joides Resolution * Device: Drilling/drill rig (DRILL) * Comment: 216 cores; 1014.2 m cored; 78.8 % recovered; 0 m drilled; 1415.5 m penetrated
Size:
5 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )