Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Cragg, Barry A; Harvey, S M; Fry, J C; Herbert, R A; Parkes, R John (1992): (Table 4) Distribution of bacterial populations in sediments of ODP Hole 128-798B [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.777440, Supplement to: Cragg, BA et al. (1992): Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B. In: Pisciotto, KA; Ingle, JCJr.; von Breymann, MT; Barron, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 127/128(1), 761-776, https://doi.org/10.2973/odp.proc.sr.127128-1.184.1992

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Project(s):
Coverage:
Latitude: 37.038500 * Longitude: 134.799600
Date/Time Start: 1989-08-28T10:24:00 * Date/Time End: 1989-08-31T08:00:00
Minimum DEPTH, sediment/rock: 0.125 m * Maximum DEPTH, sediment/rock: 503.575 m
Event(s):
128-798B * Latitude: 37.038500 * Longitude: 134.799600 * Date/Time Start: 1989-08-28T10:24:00 * Date/Time End: 1989-08-31T08:00:00 * Elevation: -911.0 m * Penetration: 517.9 m * Recovery: 514.42 m * Location: Japan Sea * Campaign: Leg128 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 54 cores; 517.9 m cored; 0 m drilled; 99.3 % recovery
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DEPTH, sediment/rockDepth sedmGeocode – mbsf
2Depth, top/minDepth topmCragg, Barry A
3Depth, bottom/maxDepth botmCragg, Barry A
4Bacteria, aerobic ammonifersBac a ammonlog10 #/cm3Cragg, Barry A
5Bacteria, anaerobic ammonifersBac ana ammonlog10 #/cm3Cragg, Barry A
6Bacteria, nitrate-reducingBact NO3-redlog10 #/cm3Cragg, Barry A
7Bacteria, sulfate reducingBact [SO4]2- redlog10 #/cm3Cragg, Barry Aacetate
8Bacteria, sulfate reducingBact [SO4]2- redlog10 #/cm3Cragg, Barry Alactate
9Bacteria, acetogensBact acetolog10 #/cm3Cragg, Barry A
10Bacteria, heterotrophicBact hetlog10 #/cm3Cragg, Barry A
11Bacteria, anaerobicBact analog10 #/cm3Cragg, Barry A
12Bacteria, cellsBac#/cm3Cragg, Barry AAcridine Orange Direct Counting (AODC)mean
13Bacteria, anaerobicBact ana%Cragg, Barry AAcridine Orange Direct Counting (AODC)viability, % of AODC
Size:
262 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML