Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Moriarty, Roisin (2012): Global distributions of epipelagic macrozooplankton abundance and biomass - Gridded data product (NetCDF) - Contribution to the MAREDAT World Ocean Atlas of Plankton Functional Types [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.777398

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 x 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass has a mean of 8.4 µg C l-1, median of 0.15 µg C l-1 and a standard deviation of 63.46 µg C l-1. The global annual average estimate of epipelagic macrozooplankton, based on the median value, is 0.02 Pg C. Biomass is highest in the tropics, decreasing in the sub-tropics and increasing slightly towards the poles. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted in the most part by the lack of information on the size of the organism and/or the absence of taxonomic information. Distribution patterns of global macrozooplankton biomass and statistical information about biomass concentrations may be used to validate biogeochemical models and Plankton Functional Type models.
Project(s):
MARine Ecosystem Model Intercomparison Project (MAREMIP)
Comment:
The attached zip file contains raw data files submitted by the authors and a NetCDF file. Progressively, raw data will be imported into PANGAEA as distinct data publications related to the original sources (journal or data publications).
Size:
41.9 MBytes

Download Data

Download dataset