Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Hellmann, Dirk (2009): Gamma density, porosity and susceptibility of sediment core GeoB13506-1 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.776866, In: Hellmann, D (2009): Geophysical measurements on sediment cores from North Pond, Mid Atlantic Ridge [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.776875

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Related to:
Hellmann, Dirk (2009): Untersuchung gesteinsphysikalischer Parameter an Sedimenten von North Pond, Mittelatlantischer Rücken. Bachelor Thesis, University of Bremen, Germany, 1-115, hdl:10013/epic.38810.d001
Project(s):
Coverage:
Latitude: 22.806000 * Longitude: -46.125200
Date/Time Start: 2009-06-09T13:53:00 * Date/Time End: 2009-06-09T15:06:00
Minimum DEPTH, sediment/rock: 0.02 m * Maximum DEPTH, sediment/rock: 5.62 m
Event(s):
MSM11/1_363-1 (GeoB13506-1) * Latitude: 22.806000 * Longitude: -46.125200 * Date/Time: 2009-03-02T17:09:00 * Elevation: -4143.0 m * Recovery: 5.74 m * Campaign: MSM11/1 * Basis: Maria S. Merian * Method/Device: Gravity corer (GC)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DEPTH, sediment/rockDepth sedmGeocode
2Core section numberSection#Hellmann, Dirk
3Position, lengthPosmmHellmann, DirkSection depth
4DATE/TIMEDate/TimeGeocode
5Sample thicknessSamp thickcmHellmann, DirkMulti-Sensor Core Logger (MSCL), GEOTEKCore thickness
6DensityDensityg/cm3Hellmann, DirkMulti-Sensor Core Logger (MSCL), GEOTEKGamma-Density
7Magnetic susceptibility, volumekappa10-6 SIHellmann, DirkBartington MS2E1 surface sanning sensor
8Porosity, fractionalPoros fracHellmann, DirkMulti-Sensor Core Logger (MSCL), GEOTEK
License:
Licensing unknown: Please contact principal investigator/authors to gain access and request licensing terms (UNKNOWN)
Size:
1684 data points

Download Data (login required)

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML