Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Cornwall, Christopher Edward; Hepburn, Christopher D; Pritchard, Daniel; Currie, Kim I; McGraw, Christina M; Hunter, Keith A; Hurd, Catriona L (2012): Seawater carbonate chemistry, gross photosynthesis and metabolically induced rate of pH change during experiments with macroalgae, 2012 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.775819, Supplement to: Cornwall, CE et al. (2012): Carbon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48(1), 137-144, https://doi.org/10.1111/j.1529-8817.2011.01085.x

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.
Keyword(s):
Benthos; Bottles or small containers/Aquaria (<20 L); Chlorophyta; Chromista; Coast and continental shelf; Corallina officinalis; Laboratory experiment; Macroalgae; Ochrophyta; Plantae; Primary production/Photosynthesis; Rhodophyllis gunnii; Rhodophyta; Schizoseris sp.; Single species; South Pacific; Temperate; Ulva sp.; Undaria pinnatifida
Funding:
Seventh Framework Programme (FP7), grant/award no. 211384: European Project on Ocean Acidification
Sixth Framework Programme (FP6), grant/award no. 511106: European network of excellence for Ocean Ecosystems Analysis
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Experimental treatmentExp treatCornwall, Christopher Edward
SalinitySalCornwall, Christopher Edward
Temperature, waterTemp°CCornwall, Christopher Edward
pHpHCornwall, Christopher EdwardpH meter (Orion)NBS scale, H+ ion concentraion in µmol/l
pH, standard errorpH std e±Cornwall, Christopher Edward
Alkalinity, totalATmmol(eq)/lCornwall, Christopher EdwardTitration
Alkalinity, total, standard errorAT std e±Cornwall, Christopher Edward
Carbon, inorganic, dissolvedDICµmol/lCornwall, Christopher EdwardCalculated using SWCO2 (Hunter, 2007)
Carbon, inorganic, dissolved, standard errorDIC std e±Cornwall, Christopher Edward
10 Carbon dioxide, totalTCO2µmol/lCornwall, Christopher EdwardCalculated using SWCO2 (Hunter, 2007)
11 Carbon dioxide, standard errorCO2 std e±Cornwall, Christopher Edward
12 Bicarbonate[HCO3]-mmol/lCornwall, Christopher EdwardCalculated using SWCO2 (Hunter, 2007)
13 Bicarbonate ion, standard error[HCO3]- std e±Cornwall, Christopher Edward
14 Carbonate ion[CO3]2-µmol/lCornwall, Christopher EdwardCalculated using SWCO2 (Hunter, 2007)
15 Carbonate ion, standard error[CO3]2- std e±Cornwall, Christopher Edward
16 SpeciesSpeciesCornwall, Christopher Edward
17 Gross photosynthesis rate, oxygenPG O2µmol/g/sCornwall, Christopher EdwardCalculated, see reference(s)
18 Gross photosynthesis rate, oxygen, standard errorPG O2 std e±Cornwall, Christopher Edward
19 Metabolically induced rate of pH changepH changeunits g DW/t/hCornwall, Christopher Edward
20 Metabolically induced rate of pH change, standard errorpH change std e±Cornwall, Christopher Edward
21 pHpHCornwall, Christopher EdwardNBS scale, H+ ion concentration in µmol/kg
22 Carbonate system computation flagCSC flagNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
23 pHpHNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)Total scale, H+ ion concentration in µmol/kg
24 Carbon dioxideCO2µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
25 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
26 Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
27 Bicarbonate ion[HCO3]-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
28 Carbonate ion[CO3]2-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
29 Alkalinity, totalATµmol/kgCornwall, Christopher EdwardCalculated
30 Carbon, inorganic, dissolvedDICµmol/kgCornwall, Christopher EdwardCalculated using CO2SYS
31 Aragonite saturation stateOmega ArgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
32 Calcite saturation stateOmega CalNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
480 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Exp treat

Sal

Temp [°C]

pH
(NBS scale, H+ ion concentraio...)

pH std e [±]

AT [mmol(eq)/l]
(Titration)

AT std e [±]

DIC [µmol/l]
(Calculated using SWCO2 (Hunte...)

DIC std e [±]
10 
TCO2 [µmol/l]
(Calculated using SWCO2 (Hunte...)
11 
CO2 std e [±]
12 
[HCO3]- [mmol/l]
(Calculated using SWCO2 (Hunte...)
13 
[HCO3]- std e [±]
14 
[CO3]2- [µmol/l]
(Calculated using SWCO2 (Hunte...)
15 
[CO3]2- std e [±]
16 
Species
17 
PG O2 [µmol/g/s]
(Calculated, see reference(s))
18 
PG O2 std e [±]
19 
pH change [units g DW/t/h]
20 
pH change std e [±]
21 
pH
(NBS scale, H+ ion concentrati...)
22 
CSC flag
(Calculated using seacarb afte...)
23 
pH
(Total scale, H+ ion concentra...)
24 
CO2 [µmol/kg]
(Calculated using seacarb afte...)
25 
pCO2water_SST_wet [µatm]
(Calculated using seacarb afte...)
26 
fCO2water_SST_wet [µatm]
(Calculated using seacarb afte...)
27 
[HCO3]- [µmol/kg]
(Calculated using seacarb afte...)
28 
[CO3]2- [µmol/kg]
(Calculated using seacarb afte...)
29 
AT [µmol/kg]
(Calculated)
30 
DIC [µmol/kg]
(Calculated using CO2SYS)
31 
Omega Arg
(Calculated using seacarb afte...)
32 
Omega Cal
(Calculated using seacarb afte...)
CO2-modified32.5127.510.012.2710.0002304383.621.722186234.500.64Corallina officinalis0.008390.018790.060010.026087.33267.22125.363016.7603005.5902161.10022.2302308.72216.40.340.54
Control32.5127.910.012.2710.0002184231.990.612071380.811.21Corallina officinalis0.007700.000760.010260.006507.72267.6149.221184.4901180.1002085.26052.7202187.22216.40.811.27
HCl-modified32.5127.520.012.1560.0032184278.211.602073133.210.70Corallina officinalis0.009550.000960.061260.041287.34267.23116.272797.9702787.6102049.96021.5702187.82104.10.330.52
CO2-modified32.5127.510.012.2710.0002304383.621.722186234.500.64Rhodophyllis gunnii0.062990.008520.177610.023787.33267.22125.363016.7603005.5902161.10022.2302308.72216.40.340.54
Control32.5127.910.012.2710.0002184231.990.612071380.811.21Rhodophyllis gunnii0.060670.014460.142610.015277.72267.6149.221184.4901180.1002085.26052.7202187.22216.40.811.27
HCl-modified32.5127.520.012.1560.0032184278.211.602073133.210.70Rhodophyllis gunnii0.063180.015330.281740.026707.34267.23116.272797.9702787.6102049.96021.5702187.82104.10.330.52
CO2-modified32.5127.510.012.2710.0002304383.621.722186234.500.64Schizosteris0.070870.007120.220210.005027.33267.22125.363016.7603005.5902161.10022.2302308.72216.40.340.54
Control32.5127.910.012.2710.0002184231.990.612071380.811.21Schizosteris0.072440.011010.162810.040577.72267.6149.221184.4901180.1002085.26052.7202187.22216.40.811.27
HCl-modified32.5127.520.012.1560.0032184278.211.602073133.210.70Schizosteris0.080460.014930.261340.009707.34267.23116.272797.9702787.6102049.96021.5702187.82104.10.330.52
CO2-modified32.5127.510.012.2710.0002304383.621.722186234.500.64Ulva sp.0.111220.017150.367610.028677.33267.22125.363016.7603005.5902161.10022.2302308.72216.40.340.54
Control32.5127.910.012.2710.0002184231.990.612071380.811.21Ulva sp.0.095380.012650.211410.018487.72267.6149.221184.4901180.1002085.26052.7202187.22216.40.811.27
HCl-modified32.5127.520.012.1560.0032184278.211.602073133.210.70Ulva sp.0.104180.022700.332540.058627.34267.23116.272797.9702787.6102049.96021.5702187.82104.10.330.52
CO2-modified32.5127.510.012.2710.0002304383.621.722186234.500.64Undaria pinnatifida0.147220.032760.348210.048567.33267.22125.363016.7603005.5902161.10022.2302308.72216.40.340.54
Control32.5127.910.012.2710.0002184231.990.612071380.811.21Undaria pinnatifida0.118440.027140.184410.036277.72267.6149.221184.4901180.1002085.26052.7202187.22216.40.811.27
HCl-modified32.5127.520.012.1560.0032184278.211.602073133.210.70Undaria pinnatifida0.157690.027110.329340.021417.34267.23116.272797.9702787.6102049.96021.5702187.82104.10.330.52