Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Westermann, Sebastian; Wollschläger, Ute; Boike, Julia (2010): Monitoring of active layer dynamics at two transects on Svalbard using multi-channel ground-penetrating radar [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.746741, Supplement to: Westermann, S et al. (2010): Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. The Cryosphere, 4, 475-487, https://doi.org/10.5194/tc-4-475-2010

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.
The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Coverage:
Median Latitude: 78.922398 * Median Longitude: 11.828865 * South-bound Latitude: 78.921220 * West-bound Longitude: 11.825700 * North-bound Latitude: 78.923770 * East-bound Longitude: 11.832870
Date/Time Start: 2008-08-14T12:00:00 * Date/Time End: 2008-09-17T12:00:00
Event(s):
LH_Transect14 (T14) * Latitude Start: 78.921220 * Longitude Start: 11.825700 * Latitude End: 78.922150 * Longitude End: 11.828770 * Date/Time Start: 2008-08-14T00:00:00 * Date/Time End: 2008-09-17T00:00:00 * Elevation Start: 22.0 m * Elevation End: 22.0 m * Location: Ny-Ålesund, Spitsbergen * Campaign: NYA_Meteorological_Obs * Basis: AWIPEV * Method/Device: Ground-penetrating radar (GPR)
LH_Transect15 (T15) * Latitude Start: 78.922450 * Longitude Start: 11.828120 * Latitude End: 78.923770 * Longitude End: 11.832870 * Date/Time Start: 2008-08-14T00:00:00 * Date/Time End: 2008-09-17T00:00:00 * Elevation Start: 22.0 m * Elevation End: 22.0 m * Location: Ny-Ålesund, Spitsbergen * Campaign: NYA_Meteorological_Obs * Basis: AWIPEV * Method/Device: Ground-penetrating radar (GPR)
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: