Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Holbourn, Ann E; Kuhnt, Wolfgang; Schulz, Michael; Erlenkeuser, Helmut (2005): Geochemistry and stable isotope record of benthic foraminifera of Miocene sediments [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.738246, Supplement to: Holbourn, AE et al. (2005): Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438, 483-487, https://doi.org/10.1038/nature04123

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The processes causing the middle Miocene global cooling, which marked the Earth's final transition into an 'icehouse' climate about 13.9 million years ago (Myr ago) (Flower and Kennett, 1993, doi:10.1029/93PA02196; 1995 doi:10.1029/95PA02022; Miller et al., 1991, doi:10.1029/90JB0201; Zachos et al., 2001, doi:10.1126/science.1059412), remain enigmatic. Tectonically driven circulation changes (Kennett, 1977, doi:10.1029/JC082i027p03843); Woodruff and Savin, 1991, doi:10.1029/91PA02561) and variations in atmospheric carbon dioxide levels (Raymo and Ruddimann, 1992, doi:10.1038/359117a0; Vincent and Berger, 1985) have been suggested as driving mechanisms, but the lack of adequately preserved sedimentary successions has made rigorous testing of these hypotheses difficult. Here we present high-resolution climate proxy records, covering the period from 14.7 to 12.7 million years ago, from two complete sediment cores from the northwest and southeast subtropical Pacific Ocean. Using new chronologies through the correlation to the latest orbital model (Laskar et al., 2004, doi:10.1051/0004-6361:20041335), we find relatively constant, low summer insolation over Antarctica coincident with declining atmospheric carbon dioxide levels at the time of Antarctic ice-sheet expansion and global cooling, suggesting a causal link. We surmise that the thermal isolation of Antarctica played a role in providing sustained long-term climatic boundary conditions propitious for ice-sheet formation. Our data document that Antarctic glaciation was rapid, taking place within two obliquity cycles, and coincided with a striking transition from obliquity to eccentricity as the drivers of climatic change.
Coverage:
Median Latitude: -0.808281 * Median Longitude: -148.099083 * South-bound Latitude: -16.007017 * West-bound Longitude: 116.272917 * North-bound Latitude: 19.456700 * East-bound Longitude: -76.378083
Date/Time Start: 1999-03-21T00:00:00 * Date/Time End: 2002-04-26T00:00:00
Event(s):
184-1146 * Latitude: 19.456700 * Longitude: 116.272917 * Date/Time Start: 1999-03-21T00:00:00 * Date/Time End: 1999-03-29T00:00:00 * Elevation: -2091.5 m * Penetration: 1455.6 m * Recovery: 1451.7 m * Location: South China Sea * Campaign: Leg184 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 153 cores; 1450.6 m cored; 5 m drilled; 100.1% recovery
202-1237 * Latitude: -16.007017 * Longitude: -76.378083 * Date/Time: 2002-04-26T00:00:00 * Elevation: -3212.3 m * Penetration: 896.2 m * Recovery: 771 m * Location: South Pacific Ocean * Campaign: Leg202 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 79 cores; 744.7 m cored; 151.5 m drilled; 103.5 % recovery
Size:
7 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: