Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Diester-Haass, Lieselotte; Meyers, Philip A; Bickert, Torsten (2004): Sedimentology of ODP sites in the Cape Basin, southeast Atlantic Ocean [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.737121, Supplement to: Diester-Haass, L et al. (2004): Carbonate crash and biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography, 19(1), PA1007, https://doi.org/10.1029/2003PA000933

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.
Project(s):
Coverage:
Median Latitude: -30.700101 * Median Longitude: 14.914966 * South-bound Latitude: -31.552660 * West-bound Longitude: 13.989944 * North-bound Latitude: -29.374417 * East-bound Longitude: 15.660360
Date/Time Start: 1997-09-26T00:00:00 * Date/Time End: 1997-10-06T07:05:00
Event(s):
175-1085 * Latitude: -29.374417 * Longitude: 13.989944 * Date/Time: 1997-09-26T00:00:00 * Elevation: -1713.1 m * Penetration: 925.2 m * Recovery: 921 m * Location: Benguela Current, South Atlantic Ocean * Campaign: Leg175 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 99 cores; 925.2 m cored; 0 m drilled; 99.5% recovery
175-1086A * Latitude: -31.552660 * Longitude: 15.660360 * Date/Time Start: 1997-10-01T20:00:00 * Date/Time End: 1997-10-02T09:25:00 * Elevation: -781.1 m * Penetration: 206.2 m * Recovery: 211.09 m * Location: Benguela Current, South Atlantic Ocean * Campaign: Leg175 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 22 cores; 206.2 m cored; 0 m drilled; 102.4 % recovery
175-1087C * Latitude: -31.465220 * Longitude: 15.310880 * Date/Time Start: 1997-10-04T02:40:00 * Date/Time End: 1997-10-06T07:05:00 * Elevation: -1371.6 m * Penetration: 491.9 m * Recovery: 478.3 m * Location: Benguela Current, South Atlantic Ocean * Campaign: Leg175 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 53 cores; 491.9 m cored; 0 m drilled; 97.2 % recovery
Size:
37 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 9) Benthic foraminiferal accumulation rate from ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737099
  2. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 8) Amount of benthic foraminifera in sediment at ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.144421
  3. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 11) Benthic/planktic foraminiferal ratio of ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737103
  4. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 5) Calcium carbonate content of sediment at ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.144413
  5. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 6) Mass accumulation rates of calcium carbonate in sediments of ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737064
  6. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 4) Stable oxygen isotopes of benthic foraminifera at ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.144412
  7. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 12) Concentration of fish debris in the sand fraction from ODP SITE 175-1085. https://doi.org/10.1594/PANGAEA.737106
  8. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 14) Concentration of glauconite in ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737112
  9. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 16) Concentration of pyrite in ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737118
  10. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 3) Sand content of sediment at ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.144411
  11. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 2) Sedimentation rates at ODPSite 175-1085. https://doi.org/10.1594/PANGAEA.144402
  12. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 15) Concentration of shelf-derived particles in ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737115
  13. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 13) Contribution of terrigenous material in ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.737109
  14. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 7) Organic carbon content of sediment at ODP Site 175-1085. https://doi.org/10.1594/PANGAEA.144416
  15. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 9) Benthic foraminiferal accumulation rate from ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737100
  16. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 8) Amount of benthic foraminifera in sediment at ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.144423
  17. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 11) Benthic/planktic foraminiferal ratio of ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737104
  18. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 12) Concentration of fish debris in the sand fraction from ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737107
  19. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 14) Concentration of glauconite in ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737113
  20. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 16) Concentration of pyrite in ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737119
  21. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 3) Sand content of sediment at ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.144410
  22. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 2) Sedimentation rates at ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.144403
  23. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 15) Concentration of shelf-derived particles in ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737116
  24. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 13) Contribution of terrigenous material in ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737110
  25. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 10) Concentrations and accumulation rates of Uvigerina spp. from ODP Hole 175-1086A. https://doi.org/10.1594/PANGAEA.737102
  26. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 9) Benthic foraminiferal accumulation rate from ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737101
  27. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 8) Amount of benthic foraminifera in sediment at ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.144425
  28. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 11) Benthic/planktic foraminiferal ratio of ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737105
  29. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 5) Calcium carbonate content of sediment at ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.144415
  30. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 6) Mass accumulation rates of calcium carbonate in sediments of ODP Site 175-1087C. https://doi.org/10.1594/PANGAEA.737069
  31. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 12) Concentration of fish debris in the sand fraction from ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737108
  32. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 14) Concentration of glauconite in ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737114
  33. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 16) Concentration of pyrite in ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737120
  34. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 3) Sand content of sediment at ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.144409
  35. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 15) Concentration of shelf-derived particles in ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737117
  36. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 13) Contribution of terrigenous material in ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.737111
  37. Diester-Haass, L; Meyers, PA; Bickert, T (2004): (Figure 7) Organic carbon content of sediment at ODP Hole 175-1087C. https://doi.org/10.1594/PANGAEA.144417