Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Lang, Friederike; von der Lippe, Moritz; Schimpel, Susanne; Scozzafava-Jaeger, Tiberio; Straub, Wolfgang (2010): Table 1: Soil chemical properties of the analysed depth profiles in the Venice lagoon [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.734201, Supplement to: Lang, F et al. (2010): Topsoil morphology indicates bio-effective redox conditions in Venice salt marshes. Estuarine, Coastal and Shelf Science, 87, 11-20, https://doi.org/10.1016/j.ecss.2009.12.002

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
Coverage:
Median Latitude: 45.488343 * Median Longitude: 12.443814 * South-bound Latitude: 45.476500 * West-bound Longitude: 12.381300 * North-bound Latitude: 45.508300 * East-bound Longitude: 12.545000
Minimum DEPTH, sediment/rock: 0.025 m * Maximum DEPTH, sediment/rock: 1.075 m
Event(s):
P1vl  * Latitude: 45.477500 * Longitude: 12.545000 * Location: Venice, Italy * Method/Device: Soil profile (SOIL)
P2vl  * Latitude: 45.478000 * Longitude: 12.453000 * Location: Venice, Italy * Method/Device: Soil profile (SOIL)
P3vl  * Latitude: 45.477200 * Longitude: 12.452400 * Location: Venice, Italy * Method/Device: Soil profile (SOIL)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Event labelEvent
Latitude of eventLatitude
Longitude of eventLongitude
EnvironmentEnvironmentLang, Friederike
HorizonHorizonLang, Friederike
DEPTH, sediment/rockDepth sedmGeocode
Depth, top/minDepth topmLang, Friederike
Depth, bottom/maxDepth botmLang, Friederike
pHpHLang, Friederike
10 SalinitySalLang, FriederikemS/cm
11 Carbon in carbonateC (carb)%Lang, Friederike
12 Carbon, organic, totalTOC%Lang, Friederike
13 Nitrogen, totalTN%Lang, Friederike
14 Carbon/Nitrogen ratioC/NLang, Friederike
15 Sulfur, totalTS%Lang, Friederike
16 SodiumNa+mmol/kgLang, Friederikemmol C/kg
17 PotassiumK+mmol/kgLang, Friederikemmol C/kg
18 MagnesiumMg2+mmol/kgLang, Friederikemmol C/kg
19 CalciumCa2+mmol/kgLang, Friederikemmol C/kg
20 Cation exchange capacityCECcmol/kgLang, Friederike
21 SodiumNa%Lang, Friederikesaturation
22 Iron oxidesFeOxmg/gLang, Friederike
Size:
505 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Event

Latitude

Longitude

Environment

Horizon

Depth sed [m]

Depth top [m]

Depth bot [m]

pH
10 
Sal
11 
C (carb) [%]
12 
TOC [%]
13 
TN [%]
14 
C/N
15 
TS [%]
16 
Na+ [mmol/kg]
17 
K+ [mmol/kg]
18 
Mg2+ [mmol/kg]
19 
Ca2+ [mmol/kg]
20 
CEC [cmol/kg]
21 
Na [%]
22 
FeOx [mg/g]
P1vl 45.477512.5450oxic/marine/humicAhGr0.0250.000.058.313.04.73.00.1250.212.42.1457812.801.93.6
P1vl45.477512.5450oxic/marine/humicGro10.1600.050.278.56.65.12.60.1520.080.92.7327010.500.92.5
P1vl45.477512.5450oxic/marine/humicGro20.3200.270.378.610.16.01.90.0480.070.94.626447.601.23.1
P2vl 45.478012.4530anoxic/marine/humicAhGr0.0400.000.087.619.72.74.60.2260.148.86.912512927.003.319.1
P2vl45.478012.4530anoxic/marine/humicGor10.1300.080.187.812.82.55.30.2280.116.46.4938819.403.314.6
P2vl45.478012.4530anoxic/marine/humicGor20.4700.180.768.27.13.13.90.1490.112.64.9575812.302.10.6
P2vl45.478012.4530anoxic/marine/humicGr10.8050.760.858.17.82.24.40.1492.810.4565512.402.31.3
P2vl45.478012.4530anoxic/marine/humicGr20.9250.851.008.45.15.92.20.0730.260.51.6199811.900.40.8
P3vl 45.477212.4524oxic/marine/humicAhGo0.0600.000.128.113.53.64.80.3190.197.45.38011420.603.64.2
P3vl45.477212.4524oxic/marine/humicGo0.2200.120.328.55.04.32.70.0680.081.93.8307411.001.71.3
P3vl45.477212.4524oxic/marine/humicGor0.4800.320.648.38.53.03.60.1600.092.19.1425811.101.93.1
P3vl45.477212.4524oxic/marine/humicGr10.7250.640.818.08.33.53.50.1500.152.08.6454910.501.9
P3vl45.477212.4524oxic/marine/humicGr20.8100.810.818.35.91.57.10.02370.270.42.216416.000.71.0
P4vl 45.476512.4535oxic/marine/humicGoAh0.0500.000.108.77.96.43.10.1310.180.81.220396.101.31.5
P4vl45.476512.4535oxic/marine/humicGo0.1750.100.258.55.45.62.70.1390.100.61.423608.500.72.2
P5vl 45.498912.4095anoxic/transition/humicAh0.0700.000.147.524.91.57.20.5140.447.810.613815230.802.515.0
P5vl45.498912.4095anoxic/transition/humicGrAh0.2850.140.437.322.62.44.40.3140.208.811.712712126.903.35.0
P5vl45.498912.4095anoxic/transition/humicGr0.4300.430.438.111.12.84.30.1330.344.29.56111619.102.22.3
P6vl 45.502012.4120oxic/transition/humicAh0.0250.000.058.07.83.45.40.3180.246.86.4749618.303.712.1
P6vl45.502012.4120oxic/transition/humicGo0.1100.050.17
P6vl45.502012.4120oxic/transition/humicfAh0.2150.170.267.715.51.67.60.5160.1812.910.512616331.204.116.1
P6vl45.502012.4120oxic/transition/humicGor0.3600.260.468.011.52.14.70.2260.155.39.37412421.202.521.6
P6vl45.502012.4120oxic/transition/humicGr10.6750.460.898.46.75.71.30.1220.083.29.55412819.501.63.6
P6vl45.502012.4120oxic/transition/humicGr20.8900.890.898.26.34.82.60.1370.721.26.435559.701.20.9
P7vl 45.508312.3813anoxic/fluvial/histicH0.0900.000.187.316.31.019.00.7130.6223.014.613315632.607.15.1
P7vl45.508312.3813anoxic/fluvial/histicGr0.2400.180.307.116.55.61.10.431.248.614.013716532.502.611.4
P7vl45.508312.3813anoxic/fluvial/histicHGr20.4250.300.558.25.22.633.00.1280.159.917.0996218.805.314.5
P7vl45.508312.3813anoxic/fluvial/histicGr30.7500.550.957.810.61.84.70.2280.199.815.51125919.605.04.6
P7vl45.508312.3813anoxic/fluvial/histicGr41.0750.951.208.26.73.24.10.1321.202.38.6475911.702.0