Not logged in
Data Publisher for Earth & Environmental Science

Howard, William R; Prell, Warren L (1994): Age models of sediment cores from the Southern Ocean. PANGAEA,, Supplement to: Howard, WR; Prell, WL (1994): Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography, 9(3), 453-482,

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Recent geochemical models invoke ocean alkalinity changes, particularly in the surface Southern Ocean, to explain glacial age pCO2 reduction. In such models, alkalinity increases in glacial periods are driven by reductions in North Atlantic Deep Water (NADW) supply, which lead to increases in deep-water nutrients and dissolution of carbonate sediments, and to increased alkalinity of Circumpolar Deep Water upwelling in the surface Southern Ocean. We use cores from the Southeast Indian Ridge and from the deep Cape Basin in the South Atlantic to show that carbonate dissolution was enhanced during glacial stages in areas now bathed by Circumpolar Deep Water. This suggests that deep Southern Ocean carbonate ion concentrations were lower in glacial stages than in interglacials, rather than higher as suggested by the polar alkalinity model [Broecker and Peng, 1989, doi:10.1029/GB001i001p00015]. Our observations show that changes in Southern Ocean CaCO3 preservation are coherent with changes in the relative flux of NADW, suggesting that Southern Ocean carbonate chemistry is closely linked to changes in deepwater circulation. The pattern of enhanced dissolution in glacials is consistent with a reduction in the supply of nutrient-depleted water (NADW) to the Southern Ocean and with an increase of nutrients in deep water masses. Carbonate mass accumulation rates on the Southeast Indian Ridge (3200-3800 m), and in relatively shallow cores (<3000 m) from the Kerguelen Plateau and the South Pacific were significantly reduced during glacial stages, by about 50%. The reduced carbonate mass accumulation rates and enhanced dissolution during glacials may be partly due to decreases in CaCO3:Corg flux ratios, acting as another mechanism which would raise the alkalinity of Southern Ocean surface waters. The polar alkalinity model assumes that the ratio of organic carbon to carbonate production on surface alkalinity is constant. Even if overall productivity in the Southern Ocean were held constant, a decrease in the CaCO3:Corg ratio would result in increased alkalinity and reduced pCO2 in Southern Ocean surface waters during glacials. This ecologically driven surface alkalinity change may enhance deepwater-mediated changes in alkalinity, and amplify rapid changes in pCO2.
Median Latitude: -41.008000 * Median Longitude: 6.915000 * South-bound Latitude: -55.010000 * West-bound Longitude: -123.100000 * North-bound Latitude: -22.330000 * East-bound Longitude: 73.170000
Date/Time Start: 1968-11-24T00:00:00 * Date/Time End: 1984-01-01T00:00:00
MD84-529 * Latitude: -48.540000 * Longitude: 62.000000 * Date/Time: 1984-01-01T00:00:00 * Elevation: -2600.0 m * Recovery: 14.5 m * Location: South Indian Ocean * Campaign: MD38 (APSARA2) * Basis: Marion Dufresne * Device: Piston corer (PC)
MD84-551 * Latitude: -55.008300 * Longitude: 73.281700 * Date/Time: 1984-01-01T00:00:00 * Elevation: -2230.0 m * Recovery: 7.68 m * Location: South Indian Ocean * Campaign: MD38 (APSARA2) * Basis: Marion Dufresne * Device: Piston corer (PC)
RC12-225 * Latitude: -53.670000 * Longitude: -123.100000 * Date/Time: 1968-11-24T00:00:00 * Elevation: -2964.0 m * Recovery: 3.49 m * Location: Southern East Pacific Rise * Campaign: RC12 * Basis: Robert Conrad * Device: Piston corer (PC)
5 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )