Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

McGee, David; Marcantonio, Franco; Lynch-Stieglitz, Jean (2007): Dust flux in the eastern equatorial Pacific [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.707256, Supplement to: McGee, D et al. (2007): Deglacial changes in dust flux in the eastern equatorial Pacific. Earth and Planetary Science Letters, 257(1-2), 215-230, https://doi.org/10.1016/j.epsl.2007.02.033

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Atmospheric dust levels may play important roles in feedbacks linking continental source areas, tropical convection, marine productivity, and global climate. These feedbacks appear to be particularly significant in the tropical Pacific, where variations in local convection and productivity have been demonstrated to have impacts on climate at higher latitudes. Modeling of past dust levels and related feedbacks has been limited, however, by a paucity of observational data. In this study we present a temporal and spatial survey of dust fluxes to the eastern equatorial Pacific over the past 30 kyr. Glacial and Holocene fluxes of 232Th, a proxy for continental material, were calculated by normalization to 230Th from a north-south transect of cores along 110°W between 3°S and 7°N (ODP sites 848-853). Fluxes were 30-100% higher during the last glacial, suggesting increased dustiness in both hemispheres during the glacial period. In both time periods, dust fluxes decrease towards the south, reflecting scavenging of Northern Hemisphere dust by precipitation at the ITCZ. The Holocene meridional dust flux gradient between 7°N and 3°S is characterized by a steep drop in dust levels at the southern edge of the modern range of the ITCZ, while the gradient is shallower and more nearly linear during the last glacial. This change may indicate that the glacial ITCZ in this region was a less effective barrier to interhemispheric dust transport, most likely due to a decrease in convective intensity and precipitation during the last glacial; alternatively, the change in gradient may be explained by increased variability in the location of the glacial ITCZ. Our data do not appear to require a mean southerly displacement of the glacial ITCZ, as suggested by the results of other studies.
Project(s):
Coverage:
Median Latitude: 2.293402 * Median Longitude: -110.320022 * South-bound Latitude: -2.993900 * West-bound Longitude: -110.571480 * North-bound Latitude: 7.211010 * East-bound Longitude: -109.751400
Date/Time Start: 1991-06-04T15:35:00 * Date/Time End: 1991-06-25T21:25:00
Event(s):
138-848B * Latitude: -2.993900 * Longitude: -110.479850 * Date/Time Start: 1991-06-04T15:35:00 * Date/Time End: 1991-06-05T11:41:00 * Elevation: -3855.6 m * Penetration: 93.8 m * Recovery: 97.75 m * Location: South Pacific Ocean * Campaign: Leg138 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 12 cores; 93.8 m cored; 0 m drilled; 104.2 % recovery
138-849A * Latitude: 0.183050 * Longitude: -110.519710 * Date/Time Start: 1991-06-07T15:49:00 * Date/Time End: 1991-06-07T23:25:00 * Elevation: -3837.1 m * Penetration: 8.7 m * Recovery: 8.69 m * Location: North Pacific Ocean * Campaign: Leg138 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 1 core; 8.7 m cored; 0 m drilled; 99.9 % recovery
138-850A * Latitude: 1.297280 * Longitude: -110.521380 * Date/Time Start: 1991-06-12T21:48:00 * Date/Time End: 1991-06-13T12:44:00 * Elevation: -3786.1 m * Penetration: 74.2 m * Recovery: 77.12 m * Location: North Pacific Ocean * Campaign: Leg138 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 8 cores; 74.2 m cored; 0 m drilled; 103.9 % recovery
Size:
6 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: