Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Dale, Christopher W; Luguet, Ambre; Macpherson, C G; Pearson, D Graham; Hickey-Vargas, Rosemary (2008): Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Legs 31, 58, and 59 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.706594, Supplement to: Dale, CW et al. (2008): Extreme platinum group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chemical Geology, 248(3-4), 213-238, https://doi.org/10.1016/j.chemgeo.2007.11.007

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Platinum-group elements (PGE), rhenium and osmium isotope data are reported for basalts from Deep Sea Drilling Project cores in the Philippine Sea Plate (PSP). Lithophile trace element and isotopic characteristics indicate a range of source components including DMM, EMII and subduction-enriched mantle. MORB-like basalts possess smooth, inclined chondrite-normalised PGE patterns with high palladium-PGE/iridium-PGE ratios, consistent with previously published data for MORB, and with the inferred compatibility of PGE. In contrast, while basalts with EMII-type lithophile element chemistry possess high Pt/Ir ratios, many have much lower Pd/Ir and unusually high Ru/Ir of >10. Similarly, back-arc samples from the Shikoku and Parece-Vela basins have very high Ru/Ir ratios (>30) and Pd/Ir as low as 1.1. Such extreme Pd/Ir and Ru/Ir ratios have not been previously reported in mafic volcanic suites and cannot be easily explained by variable degrees of melting, fractional crystallisation or by a shallow-level process such as alteration or degassing. The data appear most consistent with sampling of at least two mantle components with distinct PGE compositions. Peridotites with the required PGE characteristics (i.e. low Pd, but relatively high Ru and Re) have not been documented in oceanic mantle, but have been found in sub-continental mantle lithosphere and are the result of considerable melt depletion and selective metasomatic enrichment (mainly Re). The long-term presence of subduction zones surrounding the Philippine Sea Plate makes this a prime location for metasomatic enrichment of mantle, either through fluid enrichment or infiltration by small melt fractions.
The Re-Os isotope data are difficult to interpret with confidence due to low Os concentrations in most samples and the uncertainty in sample age. Data for Site 444A (Shikoku Basin) give an age of 17.7+/-1.3 Ma (MSWD = 14), consistent with the proposed age of basement at the site and thus provides the first robust radiometric age for these samples. The initial 187Os/188Os of 0.1298+/-0.0069 is consistent with global MORB, and precludes significant metasomatic enrichment of Os by radiogenic slab fluids. Re-Os data for Sites 446A (two suites, Daito Basin) and 450 (Parece-Vela Basin) indicate ages of 73, 68 and 43 Ma, which are respectively, 30, 17 and >12 Ma older than previously proposed ages. The alkalic and tholeiitic suites from Site 446A define regression lines with different 187Os/188Osinitial (0.170+/-0.033 and 0.112+/-0.024, respectively) which could perhaps be explained by preferential sampling of interstitial, metasomatic sulphides (with higher time-integrated Re/Os ratios) by smaller percentage alkalic melts. One sample, with lithophile elements indistinguishable from MORB, is Os-rich (146 pg/g) and has an initial 187Os/188Os of 0.1594, which is at the upper limit of the accepted OIB range. Given the Os-rich nature of this sample and the lack of evidence for subduction or recycled crust inputs, this osmium isotope ratio likely reflects heterogeneity in the DMM. The dataset as a whole is a striking indication of the possible PGE and Os isotope variability within a region of mantle that has experienced a complex tectonic history.
Project(s):
Coverage:
Median Latitude: 20.079700 * Median Longitude: 132.650600 * South-bound Latitude: 12.807200 * West-bound Longitude: 124.650800 * North-bound Latitude: 28.637500 * East-bound Longitude: 140.789000
Date/Time Start: 1973-06-23T00:00:00 * Date/Time End: 1978-03-03T00:00:00
Event(s):
31-291 * Latitude: 12.807200 * Longitude: 127.830800 * Date/Time: 1973-06-23T00:00:00 * Elevation: -5217.0 m * Penetration: 128 m * Recovery: 10.4 m * Location: North Pacific/Philippine Sea/TRENCH * Campaign: Leg31 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 6 cores; 42.5 m cored; 0 m drilled; 24.4 % recovery
31-292 * Latitude: 15.818500 * Longitude: 124.650800 * Date/Time: 1973-06-26T00:00:00 * Elevation: -2943.0 m * Penetration: 443.5 m * Recovery: 242.8 m * Location: North Pacific/Philippine Sea/CONT RISE * Campaign: Leg31 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 46 cores; 434 m cored; 9.5 m drilled; 56 % recovery
31-294 * Latitude: 22.579000 * Longitude: 131.535500 * Date/Time: 1973-07-06T00:00:00 * Elevation: -5784.0 m * Penetration: 118 m * Recovery: 23.2 m * Location: North Pacific/Philippine Sea/BASIN * Campaign: Leg31 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 6 cores; 48.5 m cored; 3 m drilled; 47.8 % recovery
Size:
7 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 31-291. https://doi.org/10.1594/PANGAEA.706586
  2. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 31-292. https://doi.org/10.1594/PANGAEA.706587
  3. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 31-294. https://doi.org/10.1594/PANGAEA.706588
  4. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 58-444A. https://doi.org/10.1594/PANGAEA.706590
  5. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 58-446A. https://doi.org/10.1594/PANGAEA.706591
  6. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 59-447A. https://doi.org/10.1594/PANGAEA.706592
  7. Dale, CW; Luguet, A; Macpherson, CG et al. (2008): (Table 2) Rhenium and platinum-group element concentrations and Os isotope data for Philippine Sea Plate basalts from DSDP Hole 59-450. https://doi.org/10.1594/PANGAEA.706593