Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Wagner, Thomas (2002): Biostratigraphy and average linear sedimentation rate and accumulation rate of ODP Site 159-959 (Table 1) [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.706283, Supplement to: Wagner, T (2002): Late Cretaceous to early Quaternary organic sedimentation in the eastern Equatorial Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 179(1-2), 113-147, https://doi.org/10.1016/S0031-0182(01)00415-1

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Reconstructing the long-term evolution of organic sedimentation in the eastern Equatorial Atlantic (ODP Leg 159) provides information about the history of the climate/ocean system, sediment accumulation, and deposition of hydrocarbon-prone rocks. The recovery of a continuous, 1200 m long sequence at ODP Site 959 covering sediments from Albian (?) to the present day (about 120 Ma) makes this position a key location to study these aspects in a tropical oceanic setting. New high resolution carbon and pyrolysis records identify three main periods of enhanced organic carbon accumulation in the eastern tropical Atlantic, i.e. the late Cretaceous, the Eocene-Oligocene, and the Pliocene-Pleistocene. Formation of Upper Cretaceous black shales off West Africa was closely related to the tectonosedimentary evolution of the semi-isolated Deep Ivorian Basin north of the Côte d'Ivoire-Ghana Transform Margin. Their deposition was confined to certain intervals of the last two Cretaceous anoxic events, the early Turonian OAE2 and the Coniacian-Santonian OAE3. Organic geochemical characteristics of laminated Coniacian-Santonian shales reveal peak organic carbon concentrations of up to 17% and kerogen type I/II organic matter, which qualify them as excellent hydrocarbon source rocks, similar to those reported from other marginal and deep sea basins. A middle to late Eocene high productivity period occurred off equatorial West Africa. Porcellanites deposited during that interval show enhanced total organic carbon (TOC) accumulation and a good hydrocarbon potential associated with oil-prone kerogen. Deposition of these TOC-rich beds was likely related to a reversal in the deep-water circulation in the adjacent Sierra Leone Basin. Accordingly, outflow of old deep waters of Southern Ocean origin from the Sierra Leone Basin into the northern Gulf of Guinea favored upwelling of nutrient-enriched waters and simultaneously enhanced the preservation potential of sedimentary organic matter along the West African continental margin. A pronounced cyclicity in the carbon record of Oligocene-lower Miocene diatomite-chalk interbeds indicates orbital forcing of paleoceanographic conditions in the eastern Equatorial Atlantic since the Oligocene-Miocene transition. A similar control may date back to the early Oligocene but has to be confirmed by further studies. Latest Miocene-early Pliocene organic carbon deposition was closely linked to the evolution of the African trade winds, continental upwelling in the eastern Equatorial Atlantic, ocean chemistry and eustatic sea level fluctuations. Reduction in carbonate carbon preservation associated with enhanced carbon dissolution is recorded in the uppermost Miocene (5.82-5.2 Ma) section and suggests that the latest Miocene carbon record of Site 959 documents the influence of corrosive deep waters which formed in response to the Messinian Salinity Crisis. Furthermore, sea level-related displacement of higher productive areas towards the West African shelf edge is indicated at 5.65, 5.6, 5.55, 5.2, 4.8 Ma. In view of humid conditions in tropical Africa and a strong West African monsoonal system around the Miocene-Pliocene transition, the onset of pronounced TOC cycles at about 5.6 Ma marks the first establishment of upwelling cycles in the northern Gulf of Guinea. An amplification in organic carbon deposition at 3.3 Ma and 2.45 Ma links organic sedimentation in the tropical eastern Equatorial Atlantic to the main steps of northern hemisphere glaciation and testifies to the late Pliocene transition from humid to arid conditions in central and western African climate. Aridification of central Africa around 2.8 Ma is not clearly recorded at Site 959. However, decreased and highly fluctuating carbonate carbon concentrations are observed from 2.85 Ma on that may relate to enhanced terrigenous (eolian) dilution from Africa.
Project(s):
Coverage:
Latitude: 3.627600 * Longitude: -2.735467
Date/Time Start: 1995-01-09T00:00:00 * Date/Time End: 1995-01-24T00:00:00
Minimum DEPTH, sediment/rock: 0.0 m * Maximum DEPTH, sediment/rock: 1158.9 m
Event(s):
159-959 * Latitude: 3.627600 * Longitude: -2.735467 * Date/Time Start: 1995-01-09T00:00:00 * Date/Time End: 1995-01-24T00:00:00 * Elevation: -2090.8 m * Penetration: 2003.6 m * Recovery: 1265.1 m * Location: Gulf of Guinea * Campaign: Leg159 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 170 cores; 1585.8 m cored; 0 m drilled; 79.8% recovery
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
DEPTH, sediment/rockDepth sedmGeocode
AGEAgeka BPGeocode
Sample code/labelSample labelDSDP/ODP/IODP sample designation
EpochEpoch
Lithologic unit/sequenceUnit
Lithology/composition/faciesLithologyNFO/Ch = nannofossil/foraminiferal ooze/chalk with thin glauconite beds, Porcell = porcellanite, b Clst = black Claystone, Snd/Cl st = sandstone/silty claystone
BiozoneBiozoneaccording to Norris (1998b, doi:10.2973/odp.proc.sr.159.036.1998), Mascle et al. (1996, doi:10.2973/odp.proc.ir.159.1996)
Reference/sourceReference
Sedimentation rateSRcm/kaWagner, Thomas
10 Accumulation rate, massMARg/cm2/kaWagner, Thomas
Size:
478 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Depth sed [m]

Age [ka BP]

Sample label

Epoch

Unit

Lithology

Biozone

Reference

SR [cm/ka]
10 
MAR [g/cm2/ka]
0.00159-959C-1H-1,0-2.5Holocene1ANFOWagner (1989)1.901.01
0.420159-959C-1H-1,40-42.5Holocene1ANFOWagner (1989)0.960.68
1.5140159-959C-1H-2,0-2.5Holocene1ANFOWagner (1989)0.130.08
1.6230159-959C-1H-2,12.5-15Late Pleistocene1ANFOWagner (1989)1.230.78
2.4300159-959C-2H-1,10-12.5Late Pleistocene1ANFOWagner (1989)2.081.43
3.4350159-959C-2H-1,110-112.5Late Pleistocene1ANFOWagner (1989)1.220.83
4.5440159-959C-2H-2,70-72.5Late Pleistocene1ANFOWagner (1989)0.770.48
4.8460159-959C-2H-2,90-92.5Late Pleistocene1ANFOCN15-14b/14aShin et al. (1998)2.311.50
6.6550159-959C-2H-3,130-132.5Late Pleistocene1ANFOWagner (1989)0.860.60
7.3630159-959C-2H-4,50-52.5Late Pleistocene1ANFOWagner (1989)0.890.64
8.4760159-959C-2H-5,10-12.5Late Pleistocene1ANFOWagner (1989)1.641.09
11.0920159-959C-2H-6,120-122.5Late Pleistocene1ANFOWagner (1989)1.210.81
11.8980159-959C-2H-7,50-52.5Late Pleistocene1ANFOWagner (1989)0.020.01
11.91530159-959C-2H-7,60-62.5Late Pleistocene1ANFOWagner (1989)0.610.40
12.81680159-959C-3H-1,100-102.5Early Pleistocene1ANFOCN14a/13aShin et al. (1998)2.141.44
17.81910159-959C-3H-5,0-2.5Early Pleistocene1ANFOWagner (1989)1.701.19
20.62080159-959C-3H-6,130-132.5Late Pliocene1ANFOWagner (1989)1.481.12
21.02110159-959C-3H-7,20-22.5Late Pliocene1ANFO/ChWagner (1989)3.071.61
28.82360159-959C-4H-6,0-2.5Late Pliocene1BNFO/ChCN12d/CN12cShin et al. (1998)3.352.85
41.22730159-959C-6H-1,90-92.5Late Pliocene1BNFO/ChCN12c/uCN12aShin et al. (1998)3.002.65
46.32900159-959C-6H-5,0-2.5Late Pliocene1BNFO/ChuCN12a/lCN12aShin et al. (1998)0.350.32
48.93650159-959C-6H-6,110-112.5Early Pliocene1BNFO/ChlCN12a/uCN11bShin et al. (1998)2.192.02
68.64550159-959C-8H-7,30-32.5Early Pliocene1BNFO/ChlCN11/CN10dShin et al. (1998)1.201.07
69.24600159-959C-9H-1,40-42Early Pliocene1BNFO/ChLAD Globorotalia cibaoensisNorris (1998a,b)1.931.83
80.85200159-959C-10H-2,100-102Early Pliocene1BNFO/ChLAD Sphaeroidinella dehiscensNorris (1998a,b)1.231.23
85.65590159-959C-10H-5,130-132Late Miocene1BNFO/ChN17/N18Norris (1998a,b)1.041.09
94.06400159-959C-11H-5,20-22Late Miocene1BNFO/ChFAD Globorotalia margaritaeNorris (1998a,b)1.962.23
94.16400159-959C-11H-5,30-32Late Miocene1BNFO/ChFAD Globorotalia margaritaeNorris (1998a,b)1.962.23
131.38300159-959A-13H-4,66-68Late Miocene1BNFO/ChN16/N17Norris (1998a,b)0.680.92
131.38300159-959B-15H-2,59-61Late Miocene1BNFO/ChN16/17Norris (1998a,b)0.680.92
142.810000159-959A-16H-1,67-69Late Miocene1BNFO/ChN15/N16Norris (1998a,b)2.020.99
148.910300159-959A-16H-5,77-79Late Miocene1BNFO/ChN14/N15Norris (1998a,b)1.510.99
156.310800159-959A-17H-4,20-22Late Miocene1BNFO/ChCN5b/CN6Shafik et al. (1998)0.701.35
166.912300159-959A-18H-4,100-102Late Miocene1BNFO/ChN12Shafik et al. (1998)0.551.69
173.413500159-959A-19H-2,100-103Middle Miocene1BNFO/ChN12/11Norris (1998a,b)1.600.89
181.414000159-959A-20X-1,90-92Middle Miocene1BNFO/ChN11/10Norris (1998a,b)0.530.87
189.915600159-959A-21X-1,78-80Middle Miocene1BNFO/ChCN3-CN4Shafik et al. (1998a)2.000.93
199.916100159-959A-22X-1,125-127Middle Miocene1BNFO/ChN8Norris (1998a,b)1.141.27
204.416500159-959A-22X-4,130-132Middle Miocene1BNFO/ChN8/7Norris (1998a,b)1.811.46
235.218200159-959A-25X-7,44-48Middle Miocene2AChertCN2/CN3Shafik et al. (1998)3.762.45
272.819200159-959A-28X-7,50-52Middle Miocene2AChertCN1C/CN2Shafik et al. (1998)0.411.69
291.923800159-959A-38X-1,50-52Early Oligocene2AChertCP19b/CN1aShafik et al. (1998)2.140.84
371.127500159-959D-40X-1,60-62Late Eocene2AChertCP19a-CP19bMascle et al. (1996)0.660.72
392.429900159-959D-42X-2,100-120Late Eocene2AChertCP19a-18Shafik et al (1998b)1.822.02
485.235000159-959D-9R-1,62-64Middle Eocene2CPorcellEocene/OligoceneShafik et al (1998b)1.521.69
568.940500159-959D-17R-5,110-114Middle Eocene2CPorcellCP14aShafik et al (1998b)2.733.04
659.043800159-959D-27R-2,82-86Middle Eocene2CPorcellCP13b-cShafik et al (1998b)2.633.13
751.247300159-959D-36R-CCEarly Eocene2CPorcellCP12b/CP13aMascle et al. (1996)0.280.49
757.849700159-959D-37R-3,30-33Early Eocene2CPorcellCP11-12aShafik et al (1998b)0.711.12
785.353600159-959D-40R-2,32-36Early Eocene2CPorcellCP9a-bShafik et al (1998b)0.781.32
796.355000159-959D-41R-3,30-34Early Paleocene2CPorcellCP8b-9aShafik et al (1998b)2.163.63
822.356200159-959D-44R-2,16-22Early Paleocene3b ClstCP7-CP8aMascle et al. (1996)0.180.31
825.457900159-959D-44R-4,28-31Early Paleocene3b ClstSelandianMascle et al. (1996)0.190.31
831.060900159-959D-44R-CCEarly Paleocene3b ClstSelandianPletsch et al. (2001)0.891.44
867.565000159-959D-48R-5,87-89Early Paleocene3b ClstDanianPletsch et al. (2001), Oboh-Ikuenobe et al. (1998), Kuhnt et al. (1998)0.130.21
957.471300159-959D-58R-1,58-61Early Paleocene3b ClstCampanian/MaastrichtianPletsch et al. (2001), Oboh-Ikuenobe et al. (1998), Kuhnt et al. (1998)0.470.74
995.683600159-959D-62R-1,24-27Early Paleocene3b ClstSantonian/CampanianWatkins et al. (1998)3.335.91
1028.984800159-959D-65R-4,30-34Late Cretaceous3b ClstSantonian (CC15b-16)Watkins et al. (1998)0.320.58
1043.289000159-959D-66R-CCLate Cretaceous3b ClstConiacian/Santonian (CC13b)Watkins et al. (1998)0.220.44
1053.093500159-959D-67R-CCLate Cretaceous4ASnd/LmstCenomanian/Turonian (CC11)Watkins et al. (1998)0.280.45
1062.797000159-959D-68R-CC,43Late Cretaceous4ASnd/LmstLate Albian-Early CenomanianHolbourn and Moullade (1998)0.481.08
1158.9120000159-959D-78R-7,10-14Early Cretaceous5Snd/ClstLate Albian-Early CenomanianHolbourn and Moullade (1998)