Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Prytulak, Julie; Vervoort, Jeff D; Plank, Terry; Yu, Chunjiang (2006): Isotopic and chemical compositions of DSDP site 18-174 sediments [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.705303, Supplement to: Prytulak, J et al. (2006): Astoria Fan sediments, DSDP site 174, Cascadia Basin: Hf–Nd–Pb constraints on provenance and outburst flooding. Chemical Geology, 233(3-4), 276-292, https://doi.org/10.1016/j.chemgeo.2006.03.009

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Project(s):
Coverage:
Median Latitude: 44.889700 * Median Longitude: -126.355200 * South-bound Latitude: 44.889700 * West-bound Longitude: -126.356700 * North-bound Latitude: 44.889700 * East-bound Longitude: -126.346700
Date/Time Start: 1971-06-14T00:00:00 * Date/Time End: 1971-06-14T00:00:00
Event(s):
18-174 * Latitude: 44.889700 * Longitude: -126.346700 * Date/Time: 1971-06-14T00:00:00 * Elevation: -2815.0 m * Penetration: 19 m * Recovery: 3 m * Location: North Pacific/FAN * Campaign: Leg18 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 2 cores; 9.5 m cored; 9.5 m drilled; 31.6 % recovery
18-174A * Latitude: 44.889700 * Longitude: -126.356700 * Date/Time: 1971-06-14T00:00:00 * Elevation: -2799.0 m * Penetration: 879 m * Recovery: 196.9 m * Location: North Pacific/FAN * Campaign: Leg18 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 37 cores; 351.5 m cored; 53 m drilled; 56 % recovery
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: