Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Spielhagen, Robert F; Erlenkeuser, Helmut (1994): Stable isotope ratios on planktonic foraminifer N. pachyderma of surface sediments from the Arctic Ocean (Table 1). PANGAEA, https://doi.org/10.1594/PANGAEA.53230, Supplement to: Spielhagen, RF; Erlenkeuser, H (1994): Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surfac water layer. Marine Geology, 119(3-4), 227-250, https://doi.org/10.1016/0025-3227(94)90183-X

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature.
The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes.
The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
Related to:
Aksu, Ali E; Vilks, Gustavs (1988): Stable isotopes in planktonic and benthic foraminifera from Arctic Ocean surface sediments. Canadian Journal of Earth Sciences, 25(5), 701-709, https://doi.org/10.1139/e88-066
Herman, Yvonne; Osmond, J K; Somayajulu, Bammidipati L K (1989): Late Neogene Arctic paleoceanography: Micropaleontology, stable isotopes, and chronology. In: Herman, Y (ed.), The Arctic Seas: Climatology, oceanography, Geology, and Biology. (Van Nostrand Reinhold, New York), 581-655, https://doi.org/10.1007/978-1-4613-0677-1_23
Köhler, Sabine E I (1992): Spätquartäre paläo-ozeanographische Entwicklung des Nordpolarmeeres anhand von Sauerstoff- und Kohlenstoff-Isotopenverhältnissen der planktischen Foraminifere. GEOMAR Report, GEOMAR Research Center for Marine Geosciences, Christian Albrechts University in Kiel, 13, 104 pp
Markussen, Berit (1986): Late Quaternary sedimentation and paleoceanography in the eastern Arctic Ocean. PhD Thesis, Oslo University, 174 pp
Markussen, Berit; Zahn, Rainer; Thiede, Jörn (1985): Late Quaternary sedimentation in the eastern Arctic Basin : Stratigraphy and depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 50(2-3), 271-285, https://doi.org/10.1016/0031-0182(85)90071-9
Morris, Thomas H (1987): Stable isotope stratigraphy of the Arctic Ocean: Fram Strait to Central Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology, 64(3-4), 201-219, https://doi.org/10.1016/0031-0182(88)90007-7
van Donk, Jan; Mathieu, Guy (1969): Oxygen isotope composition of foraminifera and water samples from the Arctic Ocean. Journal of Geophysical Research: Oceans, 74(13), 3396-3407, https://doi.org/10.1029/JC074i013p03396
Funding:
Fourth Framework Programme (FP4), grant/award no. MAS3980185: Quaternary Environment of the Eurasian North
Coverage:
Median Latitude: 83.922198 * Median Longitude: 23.709898 * South-bound Latitude: 75.683300 * West-bound Longitude: -174.766667 * North-bound Latitude: 89.983333 * East-bound Longitude: 159.167500
Date/Time Start: 1980-08-31T00:00:00 * Date/Time End: 1993-09-22T00:00:00
Minimum DEPTH, sediment/rock: m * Maximum DEPTH, sediment/rock: m
Event(s):
CESAR_83-101 (83-101)  * Latitude: 85.635000 * Longitude: -111.116833 * Date/Time: 1983-04-13T17:32:00 * Elevation: -1490.0 m * Recovery: 0.09 m * Location: Alpha Ridge, Arctic Ocean * Campaign: CESAR * Basis: Sampling/drilling from ice * Method/Device: Gravity corer (GC)
CESAR_83-104 (83-104)  * Latitude: 85.520000 * Longitude: -110.341667 * Date/Time: 1983-04-17T20:48:00 * Elevation: -1253.0 m * Recovery: 0.15 m * Location: Alpha Ridge, Arctic Ocean * Campaign: CESAR * Basis: Sampling/drilling from ice * Method/Device: Gravity corer (GC)
CESAR_83-106 (83-106)  * Latitude: 85.521667 * Longitude: -110.308333 * Date/Time: 1983-04-18T16:24:00 * Elevation: -1188.0 m * Recovery: 0.11 m * Location: Alpha Ridge, Arctic Ocean * Campaign: CESAR * Basis: Sampling/drilling from ice * Method/Device: Gravity corer (GC)
Comment:
This data set was compiled from own data and other references by Spielhagen
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Event labelEvent
Latitude of eventLatitude
Longitude of eventLongitude
Elevation of eventElevationm
DEPTH, sediment/rockDepth sedmGeocode
Neogloboquadrina pachyderma sinistral, δ18ON. pachyderma s δ18O‰ PDBSpielhagen, Robert FMass spectrometer Finnigan MAT 251
Neogloboquadrina pachyderma sinistral, δ13CN. pachyderma s δ13C‰ PDBSpielhagen, Robert FMass spectrometer Finnigan MAT 251
Reference/sourceReferenceSpielhagen, Robert F
Size:
330 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Event

Latitude

Longitude

Elevation [m]

Depth sed [m]

N. pachyderma s δ18O [‰ PDB]

N. pachyderma s δ13C [‰ PDB]

Reference
PS1308-3 80.0133-4.8366-145803.080.72
PS1310-4 80.0033-0.8167-262802.880.70
PS1312-3 80.00331.1833-367102.920.42
PS1314-3 80.00004.4967-138803.190.19
PS1319-2 80.00337.5100-53602.58-0.36
PS2137-1 81.575330.6933-139403.210.58
PS2139-1 81.508330.9067-75203.280.51
PS2140-1 81.465031.2767-46103.570.49
PS2156-1 80.086730.2300-25802.650.59
PS2157-4 81.755329.9153-287403.480.50
PS2159-4 83.960330.3697-405502.910.91
PS2161-4 85.449544.4215-400502.540.77
PS2162-1 85.794850.8267-398102.590.72
PS2163-2 86.241859.2150-304002.000.81
PS2164-4 86.337759.1757-200402.490.82
PS2165-3 86.446759.9598-201101.960.79
PS2166-2 86.860259.6988-361802.370.85
PS2167-2 86.945059.0150-443402.020.75
PS2168-1 87.510355.9335-384601.910.78
PS2170-1 87.589860.7658-422601.600.84
PS2171-1 87.585768.9772-438401.830.88
PS2172-1 87.257268.3767-438401.610.88
PS2174-4 87.494790.5002-442701.500.88
PS2175-3 87.5675103.5658-437801.750.86
PS2176-4 87.7652108.7495-436101.610.80
PS2177-1 88.0360134.9255-138801.870.84
PS2178-2 88.0050159.1675-400901.770.92
PS2179-1 87.7463138.0285-123002.090.97
PS2180-1 87.6260156.6757-400501.460.97
PS2181-1 87.5958153.0593-311201.810.90
PS2181-2 87.5958153.0593-311201.790.92
PS2182-1 87.5722151.1197-248901.810.97
PS2183-1 87.6022148.8295-201602.020.87
PS2183-2 87.6022148.8295-201602.050.83
PS2184-1 87.6112148.1398-164001.810.83
PS2185-1 87.5293144.1662-107303.530.80
PS2185-3 87.5293144.1662-107301.820.80
PS2186-5 88.5120139.9068-186701.620.84
PS2187-1 88.7348126.9133-381901.720.78
PS2189-1 88.7808144.5502-100101.930.90
PS2190-3 89.983384.7450-424001.500.89
PS2192-1 88.26039.8565-437501.520.86
PS2193-2 87.511811.4753-439901.600.89
PS2194-1 86.59327.4877-432601.560.83
PS2195-4 86.25309.6168-379301.950.78
PS2196-2 85.96180.1650-395801.730.89
PS2198-1 85.5647-9.0575-382001.830.85
PS2199-4 85.4345-11.9133-178903.030.98
PS2200-2 85.3277-14.0220-107302.610.84
PS2202-2 85.1085-14.3687-108102.870.79
PS2205-3 84.6437-6.7668-428301.890.84
PS2206-4 84.2625-2.5568-302002.400.78
PS2208-1 83.64034.6037-368103.140.84
PS2209-1 83.22538.5732-404603.130.72
PS2210-1 83.045310.1247-394903.180.74
PS2212-1 82.023715.6723-253103.440.64
PS2212-5 82.023715.6723-253103.400.62
PS2213-1 80.47308.2052-89702.390.10
PS2214-1 80.26876.6268-55203.180.44
PS2441-3 81.471730.8983-58903.140.44
PS2442-4 81.716730.3483-291503.400.46
PS2443-2 82.203334.6133-246403.040.24
PS2444-1 82.486737.7400-256603.470.55
PS2445-3 82.763340.2433-299503.580.68
PS2446-3 82.400040.8933-202503.630.66
PS2447-4 82.160042.0450-102403.530.61
PS2449-3 82.023343.5767-28603.450.65
PS2455-3 79.6517130.5350-342902.800.72
PS2456-2 78.4833133.0017-252003.180.57
PS2458-3 78.1667133.3950-98103.180.41
PS2459-2 78.0983133.5133-51703.220.37
PS2464-2 77.4800125.9033-176003.180.39
PS2465-3 77.1833126.2233-102602.970.22
PS2466-3 77.1350126.3533-55203.260.25
PS2468-3 77.6933125.8933-199103.170.46
PS2469-3 78.0600125.0000-233203.060.57
PS2470-4 79.2167122.9067-323302.260.62
PS2471-3 79.1550119.7817-304802.580.73
PS2472-3 78.6667118.7383-262002.650.62
PS2473-3 77.9817118.5717-192703.190.36
PS2474-2 77.6700118.5750-149703.240.25
PS2475-1 77.5333118.4583-110803.310.44
PS2476-3 77.3917118.1917-52403.350.35
PS2482-3 78.7017112.5117-57703.290.62
PS2483-2 78.7617112.7033-121603.360.69
PS2484-2 78.5817111.3867-23503.380.28
CESAR_83-101 85.6350-111.1168-149001.390.74Aksu and Vilks, 1988
CESAR_83-104 85.5200-110.3417-125301.550.70Aksu and Vilks, 1988
CESAR_83-106 85.5217-110.3083-118801.390.84Aksu and Vilks, 1988
CESAR_83-109 85.4867-110.6083-119001.530.65Aksu and Vilks, 1988
CESAR_83-110 85.4800-110.6250-118401.770.70Aksu and Vilks, 1988
CESAR_83-201 85.8733-108.6467-153301.310.64Aksu and Vilks, 1988
CESAR_83-202 85.8700-108.6533-158501.330.90Aksu and Vilks, 1988
CESAR_83-203 85.8717-108.6617-148001.280.78Aksu and Vilks, 1988
CESAR_83-204 85.8700-108.6700-147501.300.57Aksu and Vilks, 1988
CESAR_83-205 85.8700-108.7200-140001.400.74Aksu and Vilks, 1988
FL-433 85.9825-129.8625-162401.10Aksu and Vilks, 1988
FramII/1 86.4000-24.7000-406003.030.25Aksu and Vilks, 1988
FramII/3 86.1917-24.9167-386601.920.70Aksu and Vilks, 1988
FramII/4 85.8500-24.9167-385002.380.46Aksu and Vilks, 1988
FramII/5 87.7833-24.4000-386001.740.49Aksu and Vilks, 1988
FramIII/1 82.79506.7467-367503.150.70Aksu and Vilks, 1988
FramIII/2 82.50176.4550-332203.300.47Aksu and Vilks, 1988
FramIII/3 82.31836.1850-240003.230.26Aksu and Vilks, 1988
FramIII/7 81.83675.2650-80302.68-0.10Aksu and Vilks, 1988
FramIII/8 81.78834.9333-79503.110.14Aksu and Vilks, 1988
LOREX1 88.4183-174.5000-395601.770.97Aksu and Vilks, 1988
LOREX10 89.6733-131.0467-421702.110.83Aksu and Vilks, 1988
LOREX11 89.5833-23.6000-421201.830.79Aksu and Vilks, 1988
LOREX2 88.7567-166.0100-392001.950.62Aksu and Vilks, 1988
LOREX3 88.8383-166.6750-259001.700.74Aksu and Vilks, 1988
LOREX6 89.1367-165.0067-198001.980.85Aksu and Vilks, 1988
LOREX8 89.6167-136.0117-422502.010.64Aksu and Vilks, 1988
LOREX9 89.6383-128.0317-421701.970.83Aksu and Vilks, 1988
T3-67-11 79.5817-172.5000-281000.850.62Herman et al., 1989
T3-67-5 79.3783-174.7667-205700.980.57Herman et al., 1989
T3-67-579.3783-174.7667-205701.120.74Herman et al., 1989
PS1513-9 81.495031.4417-57703.300.55Koehler, 1992
PS1515-10 81.575031.6617-88403.330.39Koehler, 1992
PS1519-11 81.791731.5050-300403.710.53Koehler, 1992
PS1520-10 82.071732.0533-298103.810.73Koehler, 1992
PS1522-19 84.016730.3433-404503.121.01Koehler, 1992
PS1523-15 85.073329.1567-403702.640.87Koehler, 1992
PS1524-1 85.358326.3600-363402.560.77Koehler, 1992
PS1525-2 85.510025.2667-312702.420.79Koehler, 1992
PS1527-10 86.093322.0117-369802.630.90Koehler, 1992
PS1528-7 86.131723.1567-397302.200.94Koehler, 1992
PS1529-7 85.390021.7750-290602.720.80Koehler, 1992
PS1533-3 82.031715.1908-202603.720.83Koehler, 1992
PS1534-6 81.325015.3067-227003.120.82Koehler, 1992
FramI/4 84.4983-8.9783-382001.890.89Markussen et al., 1985
FramI/7 83.8767-6.2233-299002.040.72Markussen et al., 1985
FramIV/1 83.416714.6667-350003.060.98Markussen, 1986
FramIV/7 82.68337.6667-347503.300.71Markussen, 1986
FramIV/9 82.65007.5000-343603.160.73Markussen, 1986
Y80_125SGC 81.7167-8.8650-237002.910.52Markussen, 1986
D.St.A.2 83.8667-168.2000-152101.420.56Morris, 1987
FL-523 84.2000-107.4233-170101.301.05Morris, 1987
T3-66 75.6833-157.4833-94001.100.94Van Donk and Mathieu, 1969