Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Weinheimer, Amy L (2002): (Table T1) Abundance of radiolarian skeletons in scrape samples of ODP Hole 178-1098B [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.142770, Supplement to: Weinheimer, AL (2002): Data report: Radiolarians in sediments from Palmer Deep, Antarctica, Leg 178, Site 1098. In: Barker, PF; Camerlenghi, A; Acton, GD; Ramsay, ATS (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 178, 1-14, https://doi.org/10.2973/odp.proc.sr.178.221.2002

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Palmer Deep is a series of three glacially overdeepened basins on the Antarctic Peninsula shelf, ~20 km southwest of Anvers Island. Site 1098 (64°51.72'S, 64°12.48'W) was drilled in the shallowest basin, Basin I, at 1012 m water depth. The sediment recovered was primarily laminated, siliceous, biogenic, pelagic muds alternating with siliciclastic hemipelagic sediments (Barker, Camerlenghi, Acton, et al., 1999). Sedimentation rates of 0.1725 cm/yr in the upper 25 m and 0.7-0.80 cm/yr in the lower 25 m of the core have been estimated from 14C (Domack et al., 2001). The oldest datable sediments have an age of ~13 ka and were underlain by diamicton sediments of the last glacial maximum (Domack et al., 2001).
The large-scale water-mass distribution and circulation in the vicinity of Palmer Deep is dominated by Circumpolar Deep Water (CDW) below 200 m (Hofmann et al., 1996). Palmer Deep is too far from the coast to be influenced by glacial meltwater and cold-tongue generation associated with it (Domack and Williams, 1990; Dixon and Domack, 1991). Circulation patterns in the Palmer Deep area are not well understood, but evidence suggests southward flow across Palmer Deep from Anvers Island to Renaud Island (Kock and Stein, 1978). The water south of Anvers Island is nearly open with loose pack ice from February through May. The area is covered with sea ice beginning in June (Gloersen et al., 1992; Leventer et al., 1996).
Micropaleontologic data from the work of Leventer et al. (1996) on a 9-m piston core has revealed circulation and climate patterns for the past 3700 yr in the Palmer Deep. The benthic foraminifer assemblage is dominated by two taxa, Bulimina aculeata and Bolivina pseudopunctata, which are inversely related. High relative abundances of B. aculeata occur cyclically over a period of ~230 yr. The assemblage associated with high abundance of B. aculeata in Palmer Deep resembles that from the Bellingshausen shelf, which is associated with CDW. In addition to the faunal evidence, hydrographic data indicate incursions of CDW into Palmer Deep (Leventer et al., 1996). A distinctive diatom assemblage dominated by a single genus was associated with peaks in B. aculeata, whereas a few different assemblages were associated with lows in B. aculeata. Leventer et al. (1996) interpreted the variability in diatom assemblages as an indication of changes in productivity associated with changes in water column stability.
Abelmann and Gowing (1997) studied the horizontal and vertical distributions of radiolarians in the Atlantic sector of the Southern Ocean. They show that the spatial distribution of radiolarian assemblages reflects hydrographic boundaries. In a transect from the subtropical Atlantic to polar Antarctic zones, radiolarians in the upper 1000 m of the water column occurred in distinct surface and deep-living assemblages related to water depth, temperature, salinity, and nutrient content. Living assemblages resembled those preserved in underlying surface sediments (Abelmann and Gowing, 1997).
Circumantarctic coastal sediments from neritic environments contained a distinctive assemblage dominated by the Phormacantha hystrix/Plectacantha oikiskos group and Rhizoplegma boreale (Nishimura et al., 1997). Low diversity and species compositions distinguished the coastal sediments from the typical pelagic Antarctic assemblages. Factors that controlled the assemblages were water depth, proximity to the coast, occurrence of sea ice, and steepness of topography, rather than temperature and salinity. Nishimura et al. (1997) found a gradient of sorts from deep-water sites containing diverse assemblages typical of pelagic environments to coastal sites with low diversity assemblages dominated by P. hystrix/P. oikiskos group and R. boreale. In general, sites between these two extremes had increased proportions of the coastal assemblage with decreasing water depth (Nishimura et al., 1997). At a site near Hole 1098 (GC905), they showed that the relative abundance of the coastal assemblage increased downcore (Nishimura et al., 1997). The purpose of the research presented here was to make a cursory investigation into the radiolarian assemblages as possible paleoenvironmental indicators.
Project(s):
Coverage:
Latitude: -64.861930 * Longitude: -64.208000
Date/Time Start: 1998-03-13T00:00:00 * Date/Time End: 1998-03-13T00:00:00
Minimum DEPTH, sediment/rock: 1.5 m * Maximum DEPTH, sediment/rock: 45.0 m
Event(s):
178-1098B * Latitude: -64.861930 * Longitude: -64.208000 * Date/Time: 1998-03-13T00:00:00 * Elevation: -1010.6 m * Penetration: 43 m * Recovery: 44.66 m * Location: Drake Passage * Campaign: Leg178 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 5 cores; 43 m cored; 0 m drilled; 103.9 % recovery
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DEPTH, sediment/rockDepth sedmGeocode
2Sample code/labelSample labelWeinheimer, Amy LDSDP/ODP/IODP sample designation
3AbundanceAbundWeinheimer, Amy L
4Radiolarian preservationRad preservWeinheimer, Amy LG = good, M = medium
5Plectacantha oikiskosP. oikiskos#Weinheimer, Amy LCounting >45 µm fraction
6Phormacantha hystrixP. hystrix#Weinheimer, Amy LCounting >45 µm fraction
7Lithomelissa setosaL. setosa#Weinheimer, Amy LCounting >45 µm fraction
8Antarctissa strelkoviA. strelkovi#Weinheimer, Amy LCounting >45 µm fraction
9Antarctissa denticulataA. denticulata#Weinheimer, Amy LCounting >45 µm fraction
10Lithomelissa sp.Lithomelissa sp.#Weinheimer, Amy LCounting >45 µm fraction
11Spongodiscid sp.Spongodiscid sp.#Weinheimer, Amy LCounting >45 µm fraction
12Rhizoplegma borealeR. boreale#Weinheimer, Amy LCounting >45 µm fraction
13Dictyophimus gracilipesD. gracilipes#Weinheimer, Amy LCounting >45 µm fraction
14Helotholus histricosaH. histricosa#Weinheimer, Amy LCounting >45 µm fraction
15Phormostichoartus corbulaP. corbula#Weinheimer, Amy LCounting >45 µm fraction
16Cromyechinus antarcticaC. antarctica#Weinheimer, Amy LCounting >45 µm fraction
17Phorticium cleveiP. clevei#Weinheimer, Amy LCounting >45 µm fraction
18Larcopyle buetschliiL. buetschlii#Weinheimer, Amy LCounting >45 µm fraction
19Peridium spinipesP. spinipes#Weinheimer, Amy LCounting >45 µm fraction
20Spongopyle osculosaS. osculosa#Weinheimer, Amy LCounting >45 µm fraction
21Spyrid groupSpyrid gr#Weinheimer, Amy LCounting >45 µm fraction
22Saccospyris antarcticaS. antarctica#Weinheimer, Amy LCounting >45 µm fraction
23Spongotrochus glacialis groupS. glacialis gr#Weinheimer, Amy LCounting >45 µm fraction
24Cycladophora bicornisC. bicornis#Weinheimer, Amy LCounting >45 µm fraction
25Stylodictya multispinaS. multispina#Weinheimer, Amy LCounting >45 µm fraction
26Sethoconus tabulatusS. tabulatus#Weinheimer, Amy LCounting >45 µm fraction
27Lithelius nautiloidesL. nautiloides#Weinheimer, Amy LCounting >45 µm fraction
28Botryostrobus auritus/australis groupB. auritus/australis gr#Weinheimer, Amy LCounting >45 µm fraction
29Spongurus pylomaticusS. pylomaticus#Weinheimer, Amy LCounting >45 µm fraction
30Spongurus sp.Spongurus sp.#Weinheimer, Amy LCounting >45 µm fraction
31Siphocampe arachnea groupS. arachnea gr#Weinheimer, Amy LCounting >45 µm fraction
32Arachnocorallium calvataA. calvata#Weinheimer, Amy LCounting >45 µm fractiongroup
33Spongotrochus sp.Spongotrochus sp.#Weinheimer, Amy LCounting >45 µm fractionSpongotrochus sp. (?) cf. S.venustum
34Lithelius minorL. minor#Weinheimer, Amy LCounting >45 µm fraction
35Druppatractis irregularisD. irregularis#Weinheimer, Amy LCounting >45 µm fraction
36Acanthosphaera corlocaeA. corlocae#Weinheimer, Amy LCounting >45 µm fraction
37Actinomma spp.Actinomma spp.#Weinheimer, Amy LCounting >45 µm fraction
38Cycladophora davisianaC. davisiana#Weinheimer, Amy LCounting >45 µm fraction
39Actinomma sp.Actinomma sp.#Weinheimer, Amy LCounting >45 µm fractionActinomma sp. cf. A. leptodermum
40Plectacantha sp.Plectacantha sp.#Weinheimer, Amy LCounting >45 µm fraction
41Theocalyptra bicornisT. bicornis#Weinheimer, Amy LCounting >45 µm fraction
42Triceraspyris antarcticaT. antarctica#Weinheimer, Amy LCounting >45 µm fraction
43Porodiscus sp.Porodiscus sp.#Weinheimer, Amy LCounting >45 µm fraction
44Octopyle stenozonaO. stenozona#Weinheimer, Amy LCounting >45 µm fraction
45Eucyrtidium hexastichumE. hexastichum#Weinheimer, Amy LCounting >45 µm fraction
46Lithomelissa thoracitesL. thoracites#Weinheimer, Amy LCounting >45 µm fraction
47Eucyrtidium cf. teuscheriE. cf. teuscheri#Weinheimer, Amy LCounting >45 µm fraction
48Euceryphalus histricosusE. histricosus#Weinheimer, Amy LCounting >45 µm fraction
49Dictyophimus sp.Dictyophimus sp.#Weinheimer, Amy LCounting >45 µm fraction
50Lithelius sp.Lithelius sp.#Weinheimer, Amy LCounting >45 µm fractionLithelius sp. 1
51Amphiplecta sp.Amphiplecta sp.#Weinheimer, Amy LCounting >45 µm fraction
52Cycladophora sp.Cycladophora sp.#Weinheimer, Amy LCounting >45 µm fraction
53Stylochlamydium astericusS. astericus#Weinheimer, Amy LCounting >45 µm fraction
54Antarctissa brevispinaA. brevispina#Weinheimer, Amy LCounting >45 µm fraction
55Tetrapyle octacanthaT. octacantha#Weinheimer, Amy LCounting >45 µm fraction
56Cyrtopera lagunculaC. laguncula#Weinheimer, Amy LCounting >45 µm fraction
57Total countsTotal counts#Weinheimer, Amy L
Size:
1985 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML