Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 15, 2016

Experimental and theoretical investigation of the chromium–vanadium–antimony system

  • Matthias Regus , Svitlana Polesya , Gerhard Kuhn , Sergiy Mankovsky , Sage R. Bauers , David C. Johnson , Hubert Ebert EMAIL logo and Wolfgang Bensch EMAIL logo

Abstract

The binary compound V3Sb (V2.64Sb, V3Sb and V3.24Sb) was synthesized as thin multilayered films with varying V:Sb ratios. The V-content determines the crystallization temperature and it is highest for the film with the lowest amount of V. Ternary chromium–vanadium–antimony (Cr–V–Sb) films were prepared containing Cr from 10 to 51 at-% with the Sb content fixed to yield M3Sb (M=Cr, V). In the as-deposited state the layers are already interdiffused which is most likely caused by the very low repeating unit thickness between 0.29 and 0.68 nm investigated by X-ray diffraction experiments. All ternary compounds crystallized from the amorphous state with crystallization temperatures depending more on the repeating unit thickness than on chemical composition. For most samples the simultaneous crystallization of the two phases M3Sb (A15 structure type) and MSb is observed. The crystalline A15 compounds are only stable in a limited temperature range and decompose at elevated temperatures. Compared to the binary Cr–Sb system crystallization of the hexagonal phase MSb (M=Cr, V) occurs at remarkably higher temperatures, i.e. in the ternary system nucleation and crystallization of this phase is hindered. The chemical composition requires short-range composition fluctuations to nucleate the binary phase. The first principles total energy calculations using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) method confirm the experimental observations concerning the concentration-dependent stability of different phases of the Cr–V–Sb system. For the ratio M:Sb=3:1 the system is preferably stabilized in the A15 crystal structure for all possible Cr and V concentrations, while an increase of Sb content up to M:Sb=2:1 results in the stabilization of the Ni2In structure for almost all Cr concentrations. Only in the V-rich regime of the system the Heusler Ni2MnAl-type structure was found to be energetically more preferable.

References

[1] Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloys Compds.2001, 315, 193.10.1016/S0925-8388(00)01275-5Search in Google Scholar

[2] T. Caillat, A. Borshchevsky, J.-P. Fleurial, Properties of single crystalline semiconducting CoSb3. J. Appl. Phys.1996, 80, 4442.10.1063/1.363405Search in Google Scholar

[3] T. Caillat, J.-P. Fleurial, A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids1997, 58, 1119.10.1016/S0022-3697(96)00228-4Search in Google Scholar

[4] A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, F. Steglich, Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. EPL (Europhysics Letters), 2007, 80, 17008.10.1209/0295-5075/80/17008Search in Google Scholar

[5] A. Kjekshus, K. P. Walseth, On the properties of the Cr(1+x)Sb, Fe(1+x)Sb, Co(1+x)Sb, Ni(1+x)Sb, Pd(1+x)Sb and Pt(1+x)Sb phases. Acta. Chem. Scand.1969, 23, 2621.10.3891/acta.chem.scand.23-2621Search in Google Scholar

[6] H. Holseth, A. Kjekshus, Compounds with the marcasite type crystal structure. I. Compositions of the binary pnictides. Acta. Chem. Scand.1968, 22, 3273.10.3891/acta.chem.scand.22-3273Search in Google Scholar

[7] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, editors. Binary Alloy Phase Diagrams, 2nd Edition. ASM International, ASM World Headquarters 9639 Kinsman Road Materials Park, OH 44073-0002, 1990.Search in Google Scholar

[8] M. Armbrüster, W. Schnelle, U. Schwarz, Y. Grin, Chemical bonding in TiSb2 and VSb2: a quantum chemical and experimental study. Inorg. Chem.2007, 46, 6319.10.1021/ic070284pSearch in Google Scholar PubMed

[9] S. Derakhshan, A. Assoud, K. M. Kleinke, E. Dashjav, X. Qiu, Simon J. L. Billinge, H. Kleinke, Planar nets of Ti atoms comprising squares and rhombs in the new binary antimonide Ti2Sb. J. Am. Chem. Soc.2004, 126, 8295.10.1021/ja048262eSearch in Google Scholar PubMed

[10] R. Berger, Structure refinement of Ti5Sb3 from single-crystal data. Acta. Chem. Scand.1977, A31, 889.10.3891/acta.chem.scand.31a-0889Search in Google Scholar

[11] A. Kjekshus, F. Grønvold, J. Thorbjørnsen, On the phase relationships in the titanium-antimony system. The crystal structure of Ti3Sb. Acta. Chem. Scand.1962, 16, 1493.10.3891/acta.chem.scand.16-1493Search in Google Scholar

[12] M. B. Alemayehu, M. Falmbigl, K. Ta, J. Ditto, D. L. Medlin, D. C. Johnson, Designed synthesis of van der waals heterostructures: the power of kinetic control. Angew. Chem.2015, 127, 15688.10.1002/ange.201506152Search in Google Scholar

[13] N. S. Gunning, J. Feser, M. Beekman, D. G. Cahill, D. C. Johnson, Synthesis and thermal properties of solid-state structural isomers: ordered intergrowths of SnSe and MoSe2. J. Am. Chem. Soc.2015, 137, 8803.10.1021/jacs.5b04351Search in Google Scholar

[14] S. R. Bauers, D. R. Merrill, D. B. Moore, D. C. Johnson, Carrier dilution in TiSe2 based intergrowth compounds for enhanced thermoelectric performance. J. Mater. Chem. C2015, 3, 10451.10.1039/C5TC01570GSearch in Google Scholar

[15] M. Noh, C. D. Johnson, M. D. Hornbostel, J. Thiel, D. C. Johnson, Control of reaction pathway and the nanostructure of final products through the design of modulated elemental reactants. Chem. Mater.1996, 8, 1625.10.1021/cm9601087Search in Google Scholar

[16] D. C. Johnson, Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opn. Solid State Mater. Sci.1996, 3, 159.10.1016/S1359-0286(98)80082-XSearch in Google Scholar

[17] F. R. Harris, S. Standridge, C. Feik, D. C. Johnson, Design and synthesis of [(Bi2Te3)x(TiTe2)y] superlattices. Angew. Chem. Int. Ed.2003, 42, 5296.10.1002/anie.200351724Search in Google Scholar PubMed

[18] R. Atkins, J. Wilson, P. Zschack, C. Grosse, W. Neumann, D. C. Johnson, Synthesis of [(SnSe)1.15]m(TaSe2)n ferecrystals: structurally tunable metallic compounds. Chem. Mater.2012, 24, 4594.10.1021/cm302948xSearch in Google Scholar

[19] C. L. Heideman, S. Tepfer, Q. Lin, R. Rostek, P. Zschack, M. D. Anderson, I. M. Anderson, D. C. Johnson, Designed synthesis, structure and properties of a family of ferecrystalline compounds [(PbSe)1.00]m(MoSe2)n. J. Am. Chem. Soc.2013, 135, 11055.10.1021/ja402819qSearch in Google Scholar PubMed

[20] D. B. Moore, M. Beekman, S. Disch, P. Zschack, I. Häusler, W. Neumann, D. C. Johnson, Synthesis, structure and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater.2013, 25, 2404.10.1021/cm400090fSearch in Google Scholar

[21] A. L. E. Smalley, M. L. Jespersen, D. C. Johnson, Synthesis and structural evolution of RuSb3, a new metastable skutterudite compound. Inorg. Chem.2004, 43, 2486.10.1021/ic030209oSearch in Google Scholar PubMed

[22] J. R. Williams, D. C. Johnson, Synthesis of the new metastable skutterudite compound NiSb3 from modulated elemental reactants. Inorg. Chem.2002, 41, 4127.10.1021/ic011131jSearch in Google Scholar

[23] R. Schneidmiller, M. D. Hornbostel, D. C. Johnson, Kinetics of formation of molybdenum selenides from modulated reactants and structure of the new compound Mo3Se. Inorg. Chem.1997, 36, 5894.10.1021/ic9708125Search in Google Scholar

[24] S. Kraschinski, S. Herzog, W. Bensch, Low temperature synthesis of chromium tellurides using superlattice reactants: crystallisation of layered CrTe3 at 100oC and the decomposition into Cr2Te3. Solid State Sci.2002, 4, 1237.10.1016/S1293-2558(02)00004-3Search in Google Scholar

[25] S. Herzog, S. Kraschinski, W. Bensch, The reactivity of Cr-Te superlattice reactants and of co-deposited Cr-Te films: studies with in-situ X-ray diffractometry. Z. Anorg. Allg. Chem.2003, 629, 1825.10.1002/zaac.200300127Search in Google Scholar

[26] M. Behrens, R. Kiebach, W. Bensch, D. Häussler, W. Jäger, Synthesis of thin Cr3Se4 films from modulated elemental reactants via two amorphous intermediates: a detailed examination of the reaction mechanism. Inorg. Chem.2006, 45, 2704.10.1021/ic0515204Search in Google Scholar PubMed

[27] D. R. Merrill, D. B. Moore, S. R. Bauers, M. Falmbigl, D. C. Johnson, Misfit layer compounds and ferecrystals: model systems for thermoelectric nanocomposites. Materials2015, 8, 2000.10.3390/ma8042000Search in Google Scholar PubMed PubMed Central

[28] R. D. Westover, J. Ditto, M. Falmbigl, Z. L. Hay, D. C. Johnson, Synthesis and characterization of quaternary monolayer thick MoSe2/SnSe/NbSe2/SnSe heterojunction superlattices. Chem. Mater.2015, 27, 6411.10.1021/acs.chemmater.5b02588Search in Google Scholar

[29] M. Fukuto, M. D. Hornbostel, D. C. Johnson, Use of superlattice structure to control reaction mechanism: kinetics and energetics of Nb5Se4 formation. J. Am. Chem. Soc.1994, 116, 9136.10.1021/ja00099a031Search in Google Scholar

[30] M. Overbay, T. Novet, D. C. Johnson, The low temperature synthesis of vanadium selenides using superlattice reactants. J. Solid State Chem. 1996, 123, 337.10.1006/jssc.1996.0189Search in Google Scholar

[31] M. D. Hornbostel, E. J. Hyer, J. Thiel, D. C. Johnson, Rational synthesis of metastable skutterudite compounds using multilayer precursors. J. Am. Chem. Soc.1997, 119, 2665.10.1021/ja964084gSearch in Google Scholar

[32] O. Oyelaran, T. Novet, C. D. Johnson, D. C. Johnson, Controlling solid-state reaction pathways: composition dependence in the nucleation energy of InSe. J. Am. Chem. Soc.1996, 118, 2422.10.1021/ja953560kSearch in Google Scholar

[33] M. Noh, D. C. Johnson, Designed synthesis of solid state structural isomers from modulated reactants. J. Am. Chem. Soc.1996, 118, 9117.10.1021/ja9617653Search in Google Scholar

[34] M. D. Hornbostel, E. J. Hyer, J. H. Edvalson, D. C. Johnson, Systematic study of new rare earth element-iron-antimony skutterudites synthesized using multilayer precursors. Inorg. Chem.1997, 36, 4270.10.1021/ic9702375Search in Google Scholar

[35] C. D. Johnson, K. Anderson, A. D. Gromko, D. C. Johnson, Variation of the nucleation energy of molybdenum silicides as a function of the composition of an amorphous precursor. J. Am. Chem. Soc.1998, 120, 5226.10.1021/ja9802302Search in Google Scholar

[36] J. R. Williams, M. Johnson, D. C. Johnson, Composition dependence of the nucleation energy of iron antimonides from modulated elemental reactants. J. Am. Chem. Soc.2001, 123, 1645.10.1021/ja003791dSearch in Google Scholar PubMed

[37] J. R. Williams, A. L. E. Smalley, H. Sellinschegg, C. Daniels-Hafer, J. Harris, M. B. Johnson, D. C. Johnson, Synthesis of crystalline skutterudite superlattices using the modulated elemental reactant method. J. Am. Chem. Soc.2003, 125, 10335.10.1021/ja020565qSearch in Google Scholar PubMed

[38] Q. Lin, C. L. Heideman, N. Nguyen, P. Zschack, C. Chiritescu, D. G. Cahill, D. C. Johnson, Designed synthesis of families of misfit-layered compounds. Eur. J. Inorg. Chem.2008, 2008, 2382.10.1002/ejic.200800158Search in Google Scholar

[39] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science2007, 315, 351.10.1126/science.1136494Search in Google Scholar PubMed

[40] T. Novet, D. C. Johnson, New synthetic approach to extended solids: selective synthesis of iron silicides via the amorphous state. J. Am. Chem. Soc.1991, 113, 3398.10.1021/ja00009a027Search in Google Scholar

[41] L. Fister, D. C. Johnson, Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc.1992, 114, 4639.10.1021/ja00038a029Search in Google Scholar

[42] C. A. Grant and D. C. Johnson, Investigation of phase formation sequence in the iron-aluminum phase diagram using superlattice composites as reactants. Chem. Mater.1994, 6, 1067.10.1021/cm00043a031Search in Google Scholar

[43] N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed.2011, 50, 2014.10.1002/anie.201001180Search in Google Scholar PubMed

[44] S. R. Bauers, S. R. Wood, K. M. Ø. Jensen, A. B. Anders B. Blichfeld, B. B. Iversen, S. J. L. Billinge, D. C. Johnson, Structural evolution of iron antimonides from amorphous precursors to crystalline products studied by total scattering techniques. J. Am. Chem. Soc.2015, 137, 9652.10.1021/jacs.5b04838Search in Google Scholar PubMed

[45] M. Regus, G. Kuhn, S. Mankovsky, H. Ebert, W. Bensch, Investigations of the crystallization mechanism of CrSb and CrSb2 multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry. J. Solid State Chem.2012, 196, 100.10.1016/j.jssc.2012.06.046Search in Google Scholar

[46] M. Regus, S. Mankovsky, S. Polesya, G. Kuhn, J. Ditto, U. Schürmann, A. Jacquot, K. Bartholomé, C. Näther, M. Winkler, J. D. König, H. Böttner, L. Kienle, D. C. Johnson, H. Ebert, W. Bensch, Characterization of Cr-rich Cr-Sb multilayer films: syntheses of a new metastable phase using modulated elemental reactants. J. Solid State Chem.2015, 230, 254.10.1016/j.jssc.2015.06.038Search in Google Scholar

[47] V. M. Ryzhkovskii, V. S. Goncharov, Effect of high-pressure high-temperature processing on the phase composition and magnetic state of Mn1+xSb (0 x 1.0) alloys. Inorg. Chem.2010, 46, 226.Search in Google Scholar

[48] M. Regus, G. Kuhn, S. Polesya, S. Mankovsky, M. Alemayehu, M. Stolt, D. C. Johnson, H. Ebert, W. Bensch, Experimental and theoretical investigation of the new, metastable compound Cr3Sb. Z. Krist. – Cryst. Mater.2014, 229, 505.10.1515/zkri-2014-1744Search in Google Scholar

[49] S. E. Rasmussen, R. G. Hazell, Preparation of single phases and single crystals in the vanadium-gallium-antimony system. Crystal structure of V6GaSb. Acta. Chem. Scand.1978, A32, 785.10.3891/acta.chem.scand.32a-0785Search in Google Scholar

[50] L. Fister, X.-M. Li, J. McConnell, T. Novet, D. C. Johnson, Deposition system for the synthesis of modulated, ultrathin-film composites. J. Vac. Sci. Technol. A1993, 11, 3014.10.1116/1.578290Search in Google Scholar

[51] H. Ebert, The Munich SPR-KKR, version 6.3, 2012. http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR.Search in Google Scholar

[52] H. Ebert, D. Ködderitzsch, J. Minár, Calculating condensed matter properties using the KKR-Green’s function method – recent developments and applications. Rep. Prog. Phys.2011, 74, 096501.10.1088/0034-4885/74/9/096501Search in Google Scholar

[53] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys.1980, 58, 1200.10.1139/p80-159Search in Google Scholar

[54] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54, 11169.10.1103/PhysRevB.54.11169Search in Google Scholar

[55] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15.10.1016/0927-0256(96)00008-0Search in Google Scholar

[56] M. Ghosh, A. Barman, A. Das, A. K. Meikap, S. K. De, S. Chatterjee, Resistivity and magnetoresistance studies of Nb3Ir and V3Sb compounds. Phys. Stat. solidi B1997, 201, 153.10.1002/1521-3951(199705)201:1<153::AID-PSSB153>3.0.CO;2-8Search in Google Scholar

[57] M. Venkatraman, J. P. Neumann, The Cr-Sb (Chromium-Antimony) system. Bull. Alloy Phase Diagr.1990, 11, 435.10.1007/BF02898255Search in Google Scholar

[58] A. I. Snow, Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys.1953, 25, 127.10.1103/RevModPhys.25.127Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2016-1979) offers supplementary material, available to authorized users.


Received: 2016-6-9
Accepted: 2016-10-13
Published Online: 2016-12-15
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1979/html
Scroll to top button