Skip to main content
Log in

Poisson’s ratio of eclogite: Implications for lower crustal delamination of orogens

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Laboratory measurements of combined P- and S-wave-velocities of eclogite from the Dabie-Sulu ultrahigh pressure metamorphic belt and from literature data show a significant increase of Poisson’s ratio of eclogite with its intrinsic water content H2O+ and thus the degree of hydration. Unaltered eclogites with H2O+<1.0% have an average Poisson’s ratio between 0.24 and 0.25, which is identical to that calculated from single crystal elastic properties but lower than the averages (0.27±0.02) of measurements compiled by previous studies. Thus, the Poisson’s ratio of unaltered eclogites is considerably lower than that of lower crustal mafic granulite and upper mantle peridotite. The lower crust and upper mantle of the Dabie ultrahigh pressure metamorphic belt, the northern and southern parts of the Tibetan Plateau as well as the central Andes, where eclogite may have formed during Mesozoic and Cenozoic tectonism, are characterized by the Poisson’s ratio >0.26. This, together with their normal upper mantle P-wave velocities, implies that eclogites are no longer an important component of the present-day lower crust and upper mantle of these subduction-collision belts. Combined with age constraints on eclogite-facies metamorphism and subsequent exhumation, this in turn suggests that the interval from formation to delamination of eclogites is confined to a very short period of <15 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arndt, N. T., Goldstein, S. L., An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling, Tectonophysics, 1989, 161: 201–212.

    Article  Google Scholar 

  2. Kay, R.W., Kay, S.M., Creation and destruction of lower continental crust, Geol. Rundsch., 1991, 80: 259–278.

    Article  Google Scholar 

  3. Wedepohl, K. H., Chemical composition and fractionation of the continental crust, Geol. Rundsch., 1991, 80: 207–223.

    Article  Google Scholar 

  4. Wedepohl, K.H., The composition of the continental crust, Geochim. Cosmochim. Acta, 1995, 59: 1217–1232.

    Article  Google Scholar 

  5. Gao, S., Zhang, B. R., Luo, T. C. et al., Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze cratons, Geochim. Cosmochim. Acta, 1992, 56: 3933–3950.

    Article  Google Scholar 

  6. Gao, S., Luo, T. C., Zhang, B. R. et al., Chemical composition of the continental crust as revealed by studies in East China, Geochim. Cosmochim. Acta, 1998, 62: 1959–1975.

    Article  Google Scholar 

  7. Gao, S., Zhang, B. R., Jin, Z. M. et al., How mafic is the lower continental crust? Earth Planet. Sci. Lett., 1998, 106: 101–117.

    Article  Google Scholar 

  8. Rudnick, R. L., Making continental crust, Nature, 1995, 378: 571–578.

    Article  Google Scholar 

  9. Kern, H., Physical properties of crustal and upper mantle rocks with regards to lithosphere dynamics and high pressure mineralogy, Phys. Earth Planet. Inter., 1993, 79: 113–136.

    Article  Google Scholar 

  10. Christensen, N. I., Mooney, W. D., Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 1995, 100: 7961–9788.

    Google Scholar 

  11. Rudnick, R. L., Fountain, D. M., Nature and composition of the continental crust: A lower crustal perspective, Rev. Geophys., 1995, 33: 267–309.

    Article  Google Scholar 

  12. Christensen, N. I., Poisson’s ratio and crustal seismology, J. Geophys. Res., 1996, 101: 3139–3156.

    Article  Google Scholar 

  13. Griffin, W. L., O’Reilly, S. Y., The composition of the lower crust and the nature of the continental Moho—Xenolith evidence, in Mantle Xenoliths (ed. Nixon, P. H.), Amsterdam: Elsevier, 1992, 413–430.

    Google Scholar 

  14. Le Pichon, X., Henry, P., Gooffe, B., Uplift of Tibet: From eclogites to granulites—Implications for the Andean Plateau and the Variscan belt, Tectonophysics, 1997, 273: 57–76.

    Article  Google Scholar 

  15. Sapin, M., Him, A., Seismic structure and evidence for eclogitization during the Himalayan convergence, Tectonophysics, 1997, 273: 1–16.

    Article  Google Scholar 

  16. Hacker, B. R., Liou, J. G. (eds), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, Dordrecht: Kluwer, 1998, 323.

    Google Scholar 

  17. Rudnick, R. L., Barth, M., Horn, I. et al., Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle, Science, 2000, 287: 278–281.

    Article  Google Scholar 

  18. Leech, M. L., Arrested orogenic delevopment: Eclogitization, delamination, and tectonic collapse, Earth Planet. Sci. Lett., 2001, 185: 149–159.

    Article  Google Scholar 

  19. Manghnani, M. H., Ramanantoandro, R., Clark, S. P. Jr., Compressional and shear wave velocities in granulite rocks and eclogites to 10 kbar, J. Geophys. Res., 1974, 79: 5427–5446.

    Article  Google Scholar 

  20. Gao, S., Jin, Z. M., Kern, H. et al., A preliminary experimental study of seismic velocities and density of eclogites from the Dabie ultrahigh pressure metamorphic belt: Implications for lower crustal composition and the nature of Moho, Chinese Science Bulletin (in Chinese), 1997, 42: 862–865.

    Google Scholar 

  21. Kern, H., Gao, S., Jin, Z. M. et al., Petrophysical studies on rocks from the Dabie Ultrahigh-Pressure (UHP) Belt, Central China: Implications for the composition and delamination of the lower crust, Tectonophysics, 1999, 301: 191–215.

    Article  Google Scholar 

  22. Zhao, Z. D., Xie H. S., Zhou, W. G. et al., Elastic wave velocities of crustal rocks from Dabieshan Mountains: Constraints on composition of lithosphere and crust-mantle recycling, Progress in Natural Science (in Chinese), 2001, 11: 52–57.

    Google Scholar 

  23. Gao, S., Kern, H., Jin, Z. M. et al., Poisson’s ratio of eclogite: The role of retrogression, Earth Planet. Sci. Lett., 2001, 192: 523–531.

    Article  Google Scholar 

  24. Smith, D. C. (ed.), Eclogites and Eclogite-Facies Rocks, Development in Petrology, Amsterdam: Elsevier, 1988, 521.

    Google Scholar 

  25. Zhou, G. Z., Liou, J. G., Liu, Y. J., High-Pressure and Ultrahigh-Pressure Metamorphic Belts in Northern Hubei Province, China (in Chinese), Wuhan: China University of Geosciences Press, 1996, 242.

    Google Scholar 

  26. Ringwood, A. E., Green, D. H., An experimental investigation of the gabbro-eclogite transformation and some geophysical implications, Tectonophysics, 1996, 3: 383–427.

    Article  Google Scholar 

  27. Sobolev, S. V., Babeyko, Yu, A., Modelling mineral composition, density and elastic wave velocities in anhydrous magmaticrocks, Surv. Geophys., 1994, 15: 515–544.

    Article  Google Scholar 

  28. Wang, C. Y., Ding, Z. F., Song, J. L. et al., Shear wave velocity structure of the Dabie orogenic belt, Acta Geophys. Sin. (in Chinese), 1997, 40: 337–345.

    Google Scholar 

  29. Wang, C. Y., Zeng, R. S., Mooney, W. D. et al., A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling, J. Geophys. Res., 2000, 105(B): 10857–10869.

    Article  Google Scholar 

  30. Swenson, J., Beck, S. L., Zandt, G., Regional distance shear-coupled PL propagation within the northern Altiplano, central Andes, Geophys. J. Int., 1999, 139: 743–753.

    Article  Google Scholar 

  31. Swenson, J., Beck, S. L., Zandt, G., Crustal structure of the Altiplano from broadband regional waveform modelling: Implications for the composition of thick continental crust, J. Geophys. Res., 2000, 105: 607–621.

    Article  Google Scholar 

  32. Rodgers, A., Schwartz, S. Y., Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional wave form modelling: Evidence for partial melting, J. Geophys. Res., 1998, 103: 7137–7152.

    Article  Google Scholar 

  33. Hacker, B. R., Ratschbacher, L., Webb, L. et al., U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China, Earth Planet. Sci. Lett., 1998, 161: 215–230.

    Article  Google Scholar 

  34. Zhang, H. F., Zhong, Z. Q., Gao, S. et al., U-Pb zircon age of the foliated garnet-bearing granites in western Dabie Mountains, Central China, Chinese Science Bulletin, 2001, 46: 1657–1660.

    Article  Google Scholar 

  35. Guillot, S., Hattori, K. H., de Sigoyer, J., Mantle wedge serpeninization and exhumation of eclogites: Insights from eastern Ladakh, northwest Himalaya, Geology, 2000, 28: 199–202.

    Article  Google Scholar 

  36. de Sigoyer, J., Chavagnac, V., Blichert-Toft, J. et al., Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites, Geology, 2000, 28: 487–490.

    Article  Google Scholar 

  37. O’Brien, P. J., Zotov, N., Law, R. et al., Coesite in Himalayan eclogite and implications for models of India-Asia collision, Geology, 2001, 29: 435–438.

    Article  Google Scholar 

  38. Wernicke, B., Clayton, R., Ducea, M. et al., The origin of high mountains in the continents: The Southern Sierra Nevada, Science, 1996, 271: 190–193.

    Article  Google Scholar 

  39. Ducea, M., Saleeby, J., A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California, Inter. Geol. Rev., 1998, 40: 78–93.

    Google Scholar 

  40. Fliedner, M. M., Klemperer, S. L., Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition, J. Geophys. Res., 2000, 105(B): 10899–10921.

    Article  Google Scholar 

  41. Zheng, Y F., Fu, F., Li, Y. et al., Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane, Earth Planet. Sci. Lett., 1998, 155: 113–129.

    Article  Google Scholar 

  42. Hammond, W. C., Humphreys, E. D., Upper mantle seismic wave velocity: Effects of realistic partial melt geometries, J. Geophys. Res., 105 (B): 10975–10986.

  43. Jahn, B. M., Wu, F. Y., Lo, C. H. et al., Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, Central China, Chem. Geol., 1999, 157: 119–146.

    Google Scholar 

  44. Zhang, H. F., Gao, S., Zhong, Z. Q. et al., Geochemical and Nd-Pb isotopic compositions of Cretaceous granitoids constrain tectonic framework and crustal structure of the Dabieshan ultrahigh pressure metamorphic belt, China, Chem. Geol, 2002, 186: 281–299.

    Article  Google Scholar 

  45. Chen, B., Jahn, B. M, Wei, C., Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: Trace element and Nd-Sr isotope evidence, Lithos, 2002, 60: 67–88.

    Article  Google Scholar 

  46. Gao, S., Jin, Z. M., Jin, S. Y. et al., Seismic velocity structure and composition of continental crust in Dabie-Sulu area, Continental Dynamics, 1998, 3: 108–112.

    Google Scholar 

  47. Schmidt, R., Ryberg, T., Ratschbacher, L., Crustal structure of eastern Dabieshan interpreted from deep reflection and shallow tomographic data, Tectonophysics, 2001, 333: 347–359.

    Article  Google Scholar 

  48. Nelson, K. D., Are crustal thickness variation in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 1992, 20: 498–502.

    Article  Google Scholar 

  49. Gao, S., Jin, Z. M., Lower crustal delamination and its role in crust-mantle evolution, Information of Geological Sciences and Technology (in Chinese), 1997, 16: 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Kern, H., Jin, Z. et al. Poisson’s ratio of eclogite: Implications for lower crustal delamination of orogens. Sci. China Ser. D-Earth Sci. 46, 909–918 (2003). https://doi.org/10.1360/02yd0417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yd0417

Keywords

Navigation