Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T04:47:36.161Z Has data issue: false hasContentIssue false

Sorption of Naringin from Aqueous Solution by Modified Clay

Published online by Cambridge University Press:  01 January 2024

Sofia Arellano-Cardenas*
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
Tzayhri Gallardo-Velazquez
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
Gloria V. Poumian-Gamboa
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
Guillermo Osorio-Revilla
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
Socorro Lopez-Cortez
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
Yadira Rivera-Espinoza
Affiliation:
Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Plan de Ayala y Carpio, s/n. Col. Santo Tomäs, Apartado Postal 42-186, 11340 D.F., México
*
*E-mail address of corresponding author: sarellano@ipn.mx

Abstract

The flavonoid naringin is the main source of the undesirable bitter taste in some citrus juices. In commercial debittering processes, the naringin is adsorbed on non-ionic polymeric resins. Organo-clays (OCs), which have been used as sorbents for organic pollutants, could also have affinity for the naringin molecule, and thus potentially could serve as a debittering agent. The objective of the present study was to characterize the sorption capacity of a prepared OC to evaluate its ability to remove naringin from aqueous solutions, investigating the effect of adsorbent dose, initial concentration of naringin, temperature, contact time, and pH. The OC was prepared by the intercalation of cationic surfactant hexadecyltrimethylammonium bromide in a Mexican bentonite. The host clay and the OC were characterized by X-ray diffraction, Fourier-transform infrared, and nitrogen gas adsorption. The OC showed a surface area of 9.3 m2 g-1, 11.35 nm average pore diameter, and a basal spacing, d001, of 2.01 nm. The adsorbent removed naringin at the rate of 60-72% at 25°C and pH 3. The sorption capacity increased with pH and temperature. Experimental data were well fitted by both Langmuir and Freundlich adsorption models. Most of the sorption took place during the first 10 min and the equilibrium time was reached within 720 min. The rate of sorption was adjusted to pseudo second-order kinetics.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anirudhan, T.S. and Ramachandran, M.J., 2006 Adsorptive removal of tannin from aqueous solutions by cationic surfactan-modified bentonite clay Colloid and Interface Science 299 116124.CrossRefGoogle ScholarPubMed
Arellano, C.S. Gallardo, V.T. Osorio, R.G. and López, C.S., 2010 Study of the surface charge of a Porous Clay Hetersostructure (PCH) and its adsorption capacity of alkaline metal Journal of the Mexican Chemical Society 54 9297.Google Scholar
Arellano-Cárdenas, S. Gallardo-Velázquez, T. López-Cortez, S. and Osorio-Revilla, G., 2008 Preparation of a Porous Clay Heterostructure (PCH) and study of its adsorption capacity of phenol and chlorinated phenols from aqueous solutions Water Environment Research 80 6067.CrossRefGoogle ScholarPubMed
Barret, E.P. Joyner, L.G. and Halenda, P.P., 1951 The determination of pore volume and area distributions in porous substances 1. Computations from nitrogen isotherms Journal of Colloid and Interface Science 73 373380.Google Scholar
Domínguez, G. Hernández, H.R. and Aguilar, A.G., 2010 Isosteric heats of adsorption of N2O and NO on natural zeolites Journal of Mexican Chemical Society 54 111116.Google Scholar
Dubinin, M.M., 1968 Porous structure of adsorbents and catalysts Advances in Colloid and Interface Science 2 217235.CrossRefGoogle Scholar
Erkan, L. Alp, B. and Celik, M.S., 2010 Characterization of organo-bentonites obtained from different linear-chain quaternary alkylammmonium salts Clays and Clay Minerals 58 792802.CrossRefGoogle Scholar
Giles, C.H. MacEwan, T.H. Nakwa, S.N. and Smith, D., 1960 Studies in adsorption. Part. XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids Journal of the Chemical Society 3 39733993.CrossRefGoogle Scholar
Guerra, D.L. Ferreira, J.N. Pereira, M.J. Viana, R.R. and Airoldi, C., 2010 Use of natural and modified magadiite as adsorbents to remove Th(IV), U(VI), and Eu(III) from aqueous media - thermodynamic and equilibrium study Clays and Clay Minerals 58 327339.CrossRefGoogle Scholar
Kaissar, M. H. Odler, I. Brunauer, S. Hagymassy, J Jr and Bodor, E.E., 1973 Pore structure analysis by oxygen adsorption II. Analysis of five silica gels. Journal of Colloid and Interface Science 45 3854.Google Scholar
He, H. Zhou, Q. Martens, W.N. Kloprogge, T.J. Yuan, P. Xi, Y. Zhu, J. and Frost, R.L.M., 2006 Microstructure of HDTMA-modified montmorillonite and its influence on sorption characteristics Clays and Clay Minerals 54 689695.CrossRefGoogle Scholar
Ho, H.S. and McKay, G., 2000 The kinetics of sorption of divalent metal ions onto Sphagnum moss peat Water Research 34 735742.CrossRefGoogle Scholar
Huang, J.H. Liu, Y. and Wang, W., 2008 Selective adsorption of tannin from flavonoids by organically modified attapulgite clay Journal of Hazardous Materials 160 382387.CrossRefGoogle ScholarPubMed
Jian-min, R. Si-wei, W. and Wei, J., 2010 Adsorption of crystal violet onto BTEA- and CTMA-bentonite from aqueous solutions World Academy of Science, Engineering and Technology 65 790795.Google Scholar
Juang, L. Wang, C. Lee, C. and Hsu, T., 2007 Dyes adsorption onto organoclay and MCM-41 Journal of Environmental Engineering Management 17, 2938.Google Scholar
Ko, C.H. Fan, C. Chiang, P.N. Wang, M.K. and Lin, K.C., 2007 p-Nitrophenol, phenol and aniline sorption by organo-clays Journal of Hazardous Materials 149 275282.CrossRefGoogle ScholarPubMed
Koh, S.M. Song, M.S. and Takagi, T., 2005 Mineralogy, chemical characteristics and stabilities of cetylpyridiniumexchanged smectite Clay Minerals 40 213222.CrossRefGoogle Scholar
Lackovic, K. Johonson, B.B. Angove, M.J. and Wells, J.D., 2003 Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals Journal of Colloid and Interface Science 267 4959.CrossRefGoogle ScholarPubMed
Lee, H.S. and Kim, J.G., 2003 Effects of debittering on red grapefruit juice concentrate Food Chemistry 82 177180.CrossRefGoogle Scholar
López-Cortez, C. Osorio-Revilla, G. Gallardo-Velázquez, T. and Arellano-Cárdenas, S., 2008 Adsorption of vaporphase VOC’s (benzene and toluene) on modified clays and its relation with surface properties Canadian Journal of Chemistry 86 305311.CrossRefGoogle Scholar
Madejová, J. Komadel, P., Kloprogge, J.T., 2005 Information available from infrared spectra of the fine fractions of bentonites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado, USA The Clay Minerals Society 6598.Google Scholar
Mangrulkar, P.A. Kamble, S.P. Meshram, J. and Rayalu, S.S., 2008 Adsorption of phenol and o-chlorophenol by mesoporous MCM-41 Journal of Hazardous Materials 160 414421.CrossRefGoogle ScholarPubMed
Masooleh, M.S. Bazgir, S. Tamizifar, M. and Nemati, A., 2010 Adsorption of petroleum hydrocarbons on organoclay Journal of Applied Chemical Researches 4 1923.Google Scholar
Mielczarek, C., 2005 Acid-base properties of selected flavonoid glycosides European Journal of Pharmaceutical Sciences 25 273279.CrossRefGoogle ScholarPubMed
Mishra, P. and Kar, R., 2003 Treatment of grapefruite juice for bitterness removal by Amberlite IR 120 and Amberlite IR 400 and alginate entrapped nainginase enzyme Journal of Food Science 68 12291233.CrossRefGoogle Scholar
Nuntiya, A. Sompech, S. Aukkaravittayapun, S. and Pumchusak, J., 2008 The effect of surfactant concentration on the interlayer structure of organoclay Chiang Mai Journal of Science 35 199205.Google Scholar
Önal, M. and Sarikaya, Y., 2007 Some physicochemical properties of partition nanophases formed in sorptive organoclays Colloids and Surfaces A: Physicochemical Engineering Aspects 296 216221.CrossRefGoogle Scholar
Othmani-Assmann, H. Benna-Zayani, M. Geiger, S. Fraisse, B. Kbir-Ariguib, N. Trabelsi-Ayadi, M. Ghermani, N.E. and Grossiord, J.L., 2007 Physico-chemical characterizations of Tunisian organophilic bentonites Journal of Physical Chemistry 111 1086910877.Google Scholar
Pimpukdee, K. Tengjaroenkul, B. Chaveerachl, P. and Mhosatanun, B., 2004 Characterization of clays and cetylpiridinium-exchanged clays for their ability to adsorb Zearalenone Thai Journal of Veterinary Medicine 34 2431.CrossRefGoogle Scholar
Ribeiro, M.H.L. Silveira, D. and Ferreira, D.S., 2002 Selective adsorption of limonin and naringin from orange juice of naural and synthetic adsorbents European Food Research Technology 215 462471.CrossRefGoogle Scholar
Rudzinski, W. and Plazinski, W., 2006 Kinetics of solute adsorption at solid/solution interfaces: A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport Journal of Physical Chemistry B 110, 1651416525.CrossRefGoogle ScholarPubMed
Senturk, H.B. Ozdes, D. Gundogdu, A. Duran, C. and Soylak, M., 2009 Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study Journal of Hazardous Materials 172 353362.CrossRefGoogle ScholarPubMed
Shu, Y. Li, L. Zhang, Q. and Wu, H., 2010 Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite Journal of Hazardous Materials 173 4753.CrossRefGoogle ScholarPubMed
Singh, J. Huangh, P.M. Hammer, U.T. and Liaw, W.K., 1996 Influence of citric acid and glycine on the adsorption of mercury (ii) by kaolinite under various pH conditions Clays and Clay Minerals 44 4148.CrossRefGoogle Scholar
Singh, S.V. Gupta, A.K. and Jain, R.K., 2008 Adsorption of naringin on nonionic (neutral) macroporous adsorbent resin from its aqueous solution Journal of Food Engineering 86 259271.CrossRefGoogle Scholar
Van Raij, B. and Peech, M., 1971 Electrochemical properties of some oxisols and alfisols of the tropics Soil Science Society of America 36 587593.CrossRefGoogle Scholar
Wang, L. and Wang, A., 2008 Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite Journal of Hazardous Materials 160 173180.CrossRefGoogle ScholarPubMed
Wicklein, B. Darder, M. Aranda, P. and Ruiz-Hitzky, E., 2008 Organically modified clays for uptake of mycotoxins Revista de la Sociedad Española de Mineralogía 9 257258.Google Scholar
Yildiz, A. and Gür, A., 2007 Adsorption of phenol and chlorophenols on pure and modified sepiolite Journal of the Serbian Chemistry Society 72 467474.CrossRefGoogle Scholar
Zhou, Q. He, H.P. Zhu, J.X. Shen, W. Frost, R.L. and Yuan, P., 2008 Mechanims of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite-Implications for water purification Journal of Hazardous Materials 154 10251032.CrossRefGoogle Scholar
Zhu, L. and Chen, B., 2000 Sorption behavior of p-Nitrophenol on the interface between anion-cation organobentonite and water Environmental Science & Technology 34 29973002.CrossRefGoogle ScholarPubMed
Zohra, B. Aicha, K. Fatima, K.S. Nourredine, B. and Zoubir, D., 2008 Adsorption of Direct Red 2 on bentonite modified by cetyl trimethylammonium bromide Chemical Engineering Journal 136 295305.CrossRefGoogle Scholar