Skip to main content
Log in

Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. II. Systems M1, M2//SO 2−4 -H2O (M1, M2 = Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+) at 25°C

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

High toxicity of arsenic and selenium makes it important to analyze conditions, under which sulfates, arsenates, and selenites replace sulfides, arsenides, and selenides in the oxidation zones of sulfide ore deposits and in weathered technogenic waste. Published experimental data have been summarized for solubility in ternary systems containing Fe, Cu, Zn, Pb, Ni, and Co sulfates. Due to high solubility of solid phases, the thermodynamic description of solutions was carried out using the Pitzer equations; the necessary parameters were found in the literature or calculated in this article. The applied model was preliminarily verified by experimentally obtained diagrams of solubility. A database was compiled for quantitative thermodynamic modeling of mineral equilibria in most ternary and four-component subsystems of the Fe2+, Cu2+, Zn2+, Ni2+, Co2+//SO 2−4 -H2O system. The lack of experimental data for the systems containing Fe(III) sulfate does not allow calculating necessary parameters of its interaction with other sulfates and conducting calculations in multicomponent systems without simplifications and additional assumptions. Solubility diagrams are considered for the following systems: FeSO4-H2SO4-H2O, NiSO4-H2SO4-H2O, CuSO4-H2SO4-H2O, ZnSO4-H2SO4-H2O, CoSO4-H2SO4-H2O, FeSO4-Fe2(SO4)3-H2O, CoSO4-NiSO4-H2O, ZnSO4NiSO4-H2O, FeSO4-CoSO4-H2O, FeSO4-NiSO4-H2O, FeSO4-CuSO4-H2O, CoSO4-CuSO4-H2O, NiSO4-CuSO4-H2O, and ZnSO4-CoSO4-H2O. For some of these systems, equilibrium phase diagrams are calculated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addlestone, J.A., The System Nickel Sulfate-Sulfuric Acid-Water at 25 and 0°C, J. Phys. Chem., 1938, vol. 42, pp. 437–440.

    Article  Google Scholar 

  • Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Handbook of Mineralogy, vol.5 Borates, Carbonates, Sulfates, Tuscan: Mineral Data Publishing, 2003.

    Google Scholar 

  • Baes, C.F.., Reardon, E.J., and Moyer, B.A., Ion Interaction Model Applied to Equilibria in the CuSO4-H2SO4-H2O System, J. Phys. Chem., 1993, vol. 97, pp. 12343–12348.

    Article  Google Scholar 

  • Balarew, C.C. and Karaivanova, V., Effect of Isodimorphously Included Co(II), Fe(II) and Cu(II) Ions in the Crystal Structures of ZnSO4 · 7H2O and MgSO4 · 7H2O, in Industrial Crystallization, Plenum Publ. Corp.: New York, 1976a, pp. 239–243.

    Google Scholar 

  • Balarew, C.C. and Karaivanova, V., Über eine Möglichkeit der Gewinnung reiner von Isodimorphen Einschlussen freier Kristallhydrate vom Typ MSO 4 · NH 2 O, J. Inorg. Allg. Chem., 1976b, vol. 422, pp. 173–178.

    Article  Google Scholar 

  • Balarew, C.C. and Karaivanova, V., On the Isodimorphous Cocrystallization in the Systems FeSO4-CdSO4-H2O and FeSO4-CuSO4-H2O at 25°C, Compt. Rend. Acad. Bulg. Sci, 1975, vol. 28, pp. 1497–1500.

    Google Scholar 

  • Balarew, C.C., Karaivanova, V., and Oikova, T., Beitrag zur Untersuchung der isomorphen und isodimorphen Einschlusse in Kristallsaltzen. III. Untersuchung der Systeme Zinksulfat-Kobaltsulfat-Wasser und Zinksulfat-Nickelsulfat-Wasser bei 25.0°C, Comm. Depart. Chem. Bulg. Acad. Sci, 1970, vol. 3, pp. 637–643.

    Google Scholar 

  • Balarew, C. and Oikova, T., Thermodynamische Untersuchung des Systems Zinksulfat-Nickelsulfat-Wasser bei 25.0°C, Comm. Depart. Chem. Bulg. Acad. Sci, 1975, vol. 8, pp. 640–648.

    Google Scholar 

  • Cameron, F., Ferric Sulfate in Aqueous Solutions of Other Sulfates, J. Phys. Chem., 1936, vol. 40, pp. 689–696.

    Article  Google Scholar 

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Selenites and Sulfates: the System Ni2+, Co2+ // SeO 2−3 SO 2−4 -H2O—Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral-O-va, 2007, Spec. Issue, Crystallogenesis and Mineralogy, no. 7, pp. 246–266.

  • Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Thermodynamics of Arsenates, Selenites, and Sulfates in Oxidation Zone of Sulfide Ores. I. Thermodynamic Constants at Ambient Conditions Zap. Ross. Mineral-O-va, 2009, vol. 137, no. 6, pp. 105–117 [Geol. Ore Deposits (Engl. Transl.), 2010, Vol. 52 (Spec. Issue 8, Zapiski Russian Mineral. Soc.), pp. 759–770.

    Google Scholar 

  • Christov, C., Pitzer Ion-Interaction Parameters for Fe(II) and Fe(III) in the Quinary {Na + K + Mg + Cl + SO4 + H2O} System at 298.15 K, J. Chem. Thermodyn., 2004, vol. 36, pp. 223–235.

    Article  Google Scholar 

  • Downes, C.J. and Pitzer, R.S., Thermodynamics of Electrolytes. Binary Mixtures Formed from Aqueous NaCl, Na2SO4, CuCl2, and CuSO4 at 25°C, J. Solution Chem., 1976, vol. 5, pp. 389–398.

    Article  Google Scholar 

  • Filippov, V.K. and Nokhrin, V.I., Li, Me Systems // SO4-H2O(Me-Mg, Ni, Zn) at 25°C, Zh. Neorg. Khim., 1985a, vol. 30, no. 2, pp. 501–505.

    Google Scholar 

  • Filippov, V.K. and Nokhrin, V.I., Li, Me Systems // SO4H2O(Me-Mn, Co, Cu) at 25°C, Zh. Neorg. Khim., 1985b, vol. 30, no. 2, pp. 513–516.

    Google Scholar 

  • Guerra, E. and Bestetti, M., Physicochemical Properties of ZnSO4-H2SO4-H2O Electrolytes of Relevance to Zinc Electrowinning, J. Chem. Eng. Data, 2006, vol. 51, pp. 1491–1497.

    Article  Google Scholar 

  • Jambor, J.L., Nordstrom, D.K., and Alpers, C.N., Metal-Sulfate Salts from Sulfide Mineral Oxidation, Rev. Mineral. Geochem., 2000, vol. 40, pp. 305–350.

    Google Scholar 

  • Kogan, V.B., Ogorodnikov, S.K., and Kafarov, V.V., Spravochnik po rastvorimosti. Troinye i mnogokomponentnye sistemy, obrazovannye neorganicheskimi veshchestvami (Handbook for Solubility. Ternary and Multicomponent Systems Composed of Inorganic Substances), Leningrad: Nauka, 1979.

    Google Scholar 

  • Marion, G.M., Kargel, J.S., and Catling, D.C., Modeling Ferrous-Ferric Iron Chemistry with Application to Martian Surface Geochemistry, Geochim. Cosmochin. Acta, 2008, vol. 73, pp. 242–266.

    Article  Google Scholar 

  • Paige, C.R., Kornicker, W.A., Heleman, O.E., and Snodgrass, W.J., Modeling Solution Equilibria for Uranium Ore Processing: the PbSO4-H2SO4-H2O and PbSO4-Na2SO4-H2O Systems, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 1165–1173.

    Article  Google Scholar 

  • Pitzer, K.S., Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 1973, vol. 77, pp. 268–277.

    Article  Google Scholar 

  • Proskurina, O.V., Mal’tseva, E.S., Rumyantsev, A.V., and Puchkov, L.V., A Thermodynamic Study of the Ni2+, Me2+ // SO 2−4 -H2O (Me = Mg, Zn) Systems at 25°C, Zh. Fyz. Khim., 2001, vol. 75, pp. 407–413 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 75, no. 3, pp. 343–348].

    Google Scholar 

  • Reardon, E.J. and Beckie, R.D., Modeling Chemical Equilibria of Acid Mine Drainage: The FeSO4-H2SO4-H2O System, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2355–2368.

    Article  Google Scholar 

  • Reardon, E.J., Ion Interaction Model Applied to Equilibria in the NiSO4-H2SO4-H2O System, J. Phys. Chem., 1989, vol. 93, pp. 4630–4636.

    Article  Google Scholar 

  • Rumyantsev, A.V., Thermodynamics of Phase Equilibria in Water-Salt Systems Containing Solid Solutions As Exemplified in the Five-Component Mutual System K+, Co2+, Ni2+ // Cl, SO 2−4 -H2O at 25°C, Cand. Sc. (Chem.) Dissertaion, St. Petersburg: St. Peterburg State Univ, 1995.

    Google Scholar 

  • Rumyantsev, A.V., Hagemann, S., and Moog, H.C., Isopiestic Investigation of the Systems Fe2(SO4)3-H2SO4-H2O, FeCl3-H2O, and Fe(III)-(Na,K,Mg,Ca)Cln-H2O at 298.15 K, J. Phys. Chem., 2004, vol. 218, pp. 1089–1127.

    Google Scholar 

  • Tosca, N.J. and McLennan, S.M., Application of the Pitzer Ion Interaction Model to Isopiestic Data for the Fe2(SO4)3-H2SO4-H2O System at 298.15 and 323.15 K, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 2680–2698.

    Article  Google Scholar 

  • Yakhontova, L.K. and Zvereva, V.P., Osnovy mineralogii gipergeneza (Principles of Supergene Mineralogy), Vladivostok: Dal’nauka, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Charykova.

Additional information

Original Russian Text © M.V. Charykova, V.G. Krivovichev, W. Depmeier, 2010, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2010, No. 1, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charykova, M.V., Krivovichev, V.G. & Depmeier, W. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. II. Systems M1, M2//SO 2−4 -H2O (M1, M2 = Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+) at 25°C. Geol. Ore Deposits 52, 701–710 (2010). https://doi.org/10.1134/S1075701510080027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510080027

Keywords

Navigation