Skip to main content
Log in

Subduction and Oceanic Magmatism Records in Plutonic Rocks of the Kamchatsky Mys Ophiolite, Eastern Kamchatka

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents petrographic, mineralogical, and geochemical data on dunites, pyroxenites, peridotites, and gabbroids of the Kamchatsky Mys ophiolite. These data were acquired to distinguish cogenetic assemblages of igneous rocks, gain an insight into their geodynamic settings, and test various criteria of genetic links between the different magmatic rocks of ophiolites. The ultramafic and mafic rocks are shown to belong to two series, which differ in the compositions of the primary minerals, bulk rocks, and estimated trapped melts. The rocks of these series are found out to have been produced by geochemically different melts in different geodynamic settings, and during different episodes of mantle magmatism. The rocks of the high-Ti series (gabbro of the Olenegorsk massif, dunite and melanogabbro xenoliths in them, and vein gabbro in these xenoliths) crystallized from N-MORB melts in an oceanic spreading center. The rocks of the low-Ti series (dunite, pyroxenite, and gabbro veins in the residual spinel peridotites of the Mount Soldatskaya massif, as well as pyroxenite, peridotite, and gabbro alluvium and diluvium in the central and western parts of the peninsula) crystallized from water-rich boninite melts in relation to initial subduction magmatism. Taken into account the absence of boninite lavas from the Kamchatsky Mys ophiolite, the plutonic ultramafic rocks (including the rocks of the veins) might be the only evidence of subduction boninitic magmatism in the ophiolites. It was demonstrated that conclusions about the geodynamic settings of plutonic ultramafic and mafic rocks and recognition of cogenetic relations of these rocks with spatially associated basalts are more reliable when derived from the compositions of the trapped melts, which are estimated from their bulk geochemistry and primary mineral compositions, than when they are based on the mineral compositions only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Supplementary materials for the Russian and English versions of this paper at https://elibrary.ru/ and http://link.springer.com/, respectively, are presented in Supplementary 1: ESM_1.xlsx: rock compositions; ESM_2.xlsx: bulk and modal mineral compositions of the rocks; ESM_3.xlsx: comparison of the measured rock compositions and those calculated from the compositions of the minerals and mineral modes; ESM_4.xlsx: mineral/melt partition coefficients of elements; ESM_5.xlsx: evaluated concentrations and compositions of melts entrapped in the rocks; ESM_6.xlsx: compositions of the secondary silicate minerals.

REFERENCES

  1. Alexeiev, D.V., Gaedicke, C., Tsukanov, N.V., and Freitag, R., Collision of the Kronotskiy Arc at the NE Eurasia margin and structural evolution of the Kamchatka–Aleutian junction, Int. J. Earth Sci., 2006, vol. 95, pp. 977–994.

    Article  Google Scholar 

  2. Arai, S., Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry, Mineral. Mag., 1992, vol. 56, pp. 173–184.

    Article  Google Scholar 

  3. Arai, S., Okamura, H., Kadoshima, K., et al., Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting, Isl. Arc, 2011, vol. 20, no. 1, pp. 125–137.

    Article  Google Scholar 

  4. Ariskin, A.A. and Barmina, G.S., COMAGMAT: development of a magma crystallization model and its petrological applications, Geochem. Int., 2004, vol. 42, pp. 1–157.

    Google Scholar 

  5. Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  6. Le Bas, M.J. and Streckeisen, A.L., The IUGS systematics of igneous rocks, J. Geol. Soc., 1991, vol. 148, no. 5, pp. 825–833.

    Article  Google Scholar 

  7. Batanova V.G., Lyaskovskaya Z.E., Savel’eva G.N., Sobolev A.V. Peridotites from the Kamchatsky Mys: evidence of oceanic mantle melting near a hotspot, Russ. Geol. Geophys., 2014, vol. 55, no. 12, pp. 1395–1403.

    Article  Google Scholar 

  8. Batanova, V.G., Belousov, I.A., Savelieva, G.N., and Sobolev, A.V., Consequences of channelized and diffuse melt transport in suprasubduction zone mantle: evidence from the Voykar ophiolite (Polar Urals), J. Petrol., 2011, vol. 52, no. 12, pp. 2483–2521.

    Article  Google Scholar 

  9. Bazylev, B.A., Ledneva, G.V., Bychkova, Ya.V., et al., Estimation of the content and composition of trapped melt in dunite, Geochem. Int., 2019, vol. 64, no. 5, pp. 509–523.

    Article  Google Scholar 

  10. Bédard, J.H., A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids, Chem. Geol., 1994, vol. 118, pp. 143–153.

    Article  Google Scholar 

  11. Bédard, J.H., Trace element partitioning in plagioclase feldspar, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 3717–3742.

    Article  Google Scholar 

  12. Berger, J., Lo, K., Diot, H., et al., Deformation-driven differentiation during in situ crystallization of the 2.7 Ga Iguilid mafic intrusion (West African Craton, Mauritania), J. Petrol., 2017, vol. 58, no. 4, pp. 819–840.

    Article  Google Scholar 

  13. Betkhol’d, A.F., Kvasov, A.I., and Semenova, D.F., Geology, petrography, and geochemistry of ophiolites of the Kamchatsky Mys Peninsula (Eastern Kamchatka), Tikhookean. Geol., 1986, no. 6, pp. 78–84.

  14. Boyarinova, M.E., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii m-ba 1 : 200 000. Seriya Vostochno-Kamchatskaya. Listy O-58-XXVI, XXXI, XXXII (Ust’-Kamchatsk) (State Geological Map of the Russian Federation on a Scale 1 : 200 000. Eastern Kamchatka Seies. Sheets O-58-XXVI, XXXI, XXXII (Ust’-Kamchatsk)) St. Petersburg: VSEGEI, 1999.

  15. Bragin, N.Yu., Zinkevich, V.P., Lyashenko, O.V., et al., Middle Cretaceous (Aptian–Turonian) deposits in the tectonic structure of Eastern kamchatka, Ocherki po geologii Vostoka SSSR (Overview on Geology of Eastern USSR), Moscow: Nauka, 1986, pp. 21–34.

    Google Scholar 

  16. Dick, H.J.B. and Bullen, Th., Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 54–76.

    Article  Google Scholar 

  17. Dilek, Y., Ophiolite concept and its evolution, Ophiolite Concept and the Evolution of Geological Thought, Dilek, Y., Newcomb, S., and Hawkins, J.W., Eds. Geol. Soc. Am. Spec. Pap., 2003, vol. 373, pp. 1–16.

    Book  Google Scholar 

  18. Dilek, Y. and Furnes, H., Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere, Geol. Soc. Am. Bull., 2011, vol. 123, nos. 3/4, pp. 387–411.

    Article  Google Scholar 

  19. Duggen, S., Portnyagin, M., Baker, J., et al., Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 452–480.

    Article  Google Scholar 

  20. Fedorchuk, A.V., Peyve, A.A., Gul’ko, N.I., and Savichev, A.T., Petrogeochemical types of basalts of ophiolite association of the Kamchatka Mys Peninsula, Eastern Kamchatka, Geokhimiya, 1989, no. 12, pp. 1710–1717.

  21. Frei, D., Liebscher, A., Franz, G., et al., Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1230 to 1535oC in the model system Na2O–CaO–MgO–Al2O3–SiO2, Contrib. Mineral. Petrol., 2009, vol. 157, pp. 473–490.

    Article  Google Scholar 

  22. Hawkins, J.W., Geology of supra-subduction zones - implications for the origin of ophiolites, Ophiolite Concept and the Evolution of Geological Thought, Dilek, Y., Newcomb, S., and Hawkins, J.W., Eds., Geol. Soc. Am. Spec. Pap., 2003, vol. 373, pp. 227–268.

    Google Scholar 

  23. Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., IMA report, nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, pp. 2031–2048.

    Article  Google Scholar 

  24. Kamenetsky, V.S., Crawford, A.J., and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, J. Petrol., 2001, vol. 42, no. 4, pp. 655–671.

    Article  Google Scholar 

  25. Karimov, A.A., Gornova, M.A., Belyaev, V.A., et al., Genesis of pyroxenite veins in supra-subduction zone peridotites: evidence from petrography and mineral composition of Egiingol massif (northern Mongolia), China Geol., 2020, vol. 3, no. 2, pp. 299–313.

    Article  Google Scholar 

  26. Kelemen, P.B., Hanghøj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, Holland, H.D., Turekian, K.K., Eds., 2003, vol. 3, pp. 593–659.

  27. Khotin, M.Yu. and Shapiro, M.N., Ophiolites of the Kamchatsky Mys Peninsula, Eastern Kamchatka: structure, composition, and geodynamic setting, Geotectonics, 2006, vol. 40, no.4, pp. 297–320.

    Article  Google Scholar 

  28. Korneeva, A.A., Nekrylov, N., Kamenetsky, V.S., et al., Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia), Lithos, 2020, vol. 370–371, p. 105657.

    Article  Google Scholar 

  29. Kramer, V., Skolotnev, S.G., Tsukanov, N.V., et al., Geochemistry, mineralogy, and geological position of mafic-ultramafic complexes of the Kamchatsky Mys Peninsula: preliminary results, Petrologiya i metallogeniya bazit-giperbazitovykh kompleksov Kamchatki (Petrology and Metallogeny of Mafic–Ultramafic Complexes of Kamchatka), Moscow: Nauchnyi mir, 2001, pp. 170–191.

  30. Lander, A.V. and Shapiro, M.N., The origin of the modern Kamchatka subduction zone, Eichelberger, J., Gordeev, E., Izbekov, P., Eds., Geophys. Monogr. Ser., 2007, vol. 172, pp. 57–64.

    Book  Google Scholar 

  31. Ledneva, G.V., Bazylev, B.A., Kuzmin, D.V., and Kononkova, N.N., Pyroxenite veins in spinel peridotites of the Unnavayam sheet, Kuyul Ophiolite Terrane (Koryak Upland): origin and setting of formation, Geochem. Int., 2017, vol. 55, no. 4, pp. 330–340.

    Article  Google Scholar 

  32. Levashova, N.M., Shapiro, M.N., Ben’yamovskii, V.N., and Bazhenov, M.L., Kinematics of the Kronotskii Island Arc (Kamchatka) from paleomagnetic and geological data, Geotectonics, 2000, vol. 34, no. 2, pp. 141–159.

    Google Scholar 

  33. Locock, A.J., An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations, Comp. Geosci., 2014, vol. 62, pp. 1–11.

    Article  Google Scholar 

  34. Luchitskaya, M.V., Tsukanov, N.V., and Skolotnev, S.G., New SHRIMP U–Pb age data on zircons from plagiogranites in the ophiolites of the Kamchatsky Mys Peninsula, Eastern Kamchatka, Dokl. Earth Sci., 2006, vol. 408, no. 4, pp. 535–537.

    Article  Google Scholar 

  35. Nekrylov, H. Korneeva, A.A., Savelyev, D.P., and Antsiferova, T.N., Variations of source composition and melting degrees of olivine-phyric rocks from Kamchatsky Mys: results of geochemical modeling of trace element contents in melts, Petrology, 2021, vol. 29, no. 1, pp. 14–23.

    Article  Google Scholar 

  36. Osipenko, A.B. and Krylov, K.A., Geochemical heterogeneity of mantle peridotites in ophiolites of Eastern Kamchatka: reasons and geodynamic consequences, Petrologiya i metallogeniya bazit-giperbazitovykh kompleksov Kamchatki (Petrology and Metallogeny of Mafic–Ultramafic Complexes of Kamchatka), Moscow: Nauchnyi mir, 2001, pp. 138–158.

  37. Parkinson, I.J. and Pearce, J.A., Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting, J. Petrol., 1998, vol. 39, no. 9, pp. 1577–1618.

    Article  Google Scholar 

  38. Peyve, A.A., Ultramafic rocks of the Kamchatsky Mys Peninsula (Eastern Kamchatka), Tikhookean. Geol., 1987, no. 2, pp. 41–46.

  39. Perk, N.W., Coogan, L.A., Karson, J.A., et al., Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: implications for the accretion of the lower crust at the southern East Pacific Rise, Contrib. Mineral. Petrol., 2007, vol. 154, pp. 575–590.

    Article  Google Scholar 

  40. Portnyagin, M.V., Origin of Suprasubduction Mantle Magmas by the Example of the Troodos Ophiolite Complex, Cyprus Island, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation (GEOKHI, Moscow, 1997).

  41. Portnyagin, M., Hoernle, K., Hauff, F., et al., New data of Cretaceous Pacific MORB from accretionary complexes in Kamchatka: implications for the origin of depleted component in the hawaiian hotspot lavas, Geophys. Res. Abs., 2006, vol. 8, p. 04937.

    Google Scholar 

  42. Portnyagin, M.V., Savelyev, D.P., Hoernle, K., et al., Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka, Geology, 2008, vol. 36, no. 11, pp. 903–906.

    Article  Google Scholar 

  43. Portnyagin, M., Hoernle, K., and Savelyev, D., Ultra-depleted melts from Kamchatkan ophiolites: evidence for the interaction of the Hawaiian plume with an oceanic spreading center in the Cretaceous?, Earth Planet. Sci. Lett., 2009, vol. 287, pp. 194–204.

    Article  Google Scholar 

  44. Raznitsin, Yu.N., Khubunaya, S.A., and Tsukanov, N.V., Tectonics of eastern Kronotsky Peninsula and formation affiliation of basalts, Geotektonika, 1985, no. 1, pp. 88–101.

  45. Ridolfi, F., Renzulli, A., and Puerini, M., Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes, Contrib. Mineral. Petrol., 2010, vol. 160, pp. 45–66.

    Article  Google Scholar 

  46. Savelyev, D.P., Within-plate alkaline basalts in the Cretaceous accretionary complex of the Kamchatka Peninsula (Eastern Kamchatka), Vulkanol. Seismol., 2003, no. 1, pp. 14–20.

  47. Shcherbinina, E.A., Nannoplankton from Paleogene deposits in Eastern Kamchatka, Stratigraphy. Geol. Correlation, 1997, vol. 5, no. 2, pp. 156–166.

    Google Scholar 

  48. Skolotnev, S.G., Tsukanov, N.V., Savelyev D.P., and Fedorchuk, A.V., Compositional heterogeneity of the island-arc rocks of the Kronotsky and Kamchatsky Mys segments of the Kronotsky paleoarc, Kamchatka, Dokl. Earth Sci., 2008, vol. 418, no. 1, pp. 37–41.

    Article  Google Scholar 

  49. Sobolev, A.V. and Nikogosyan, I.K., Petrology of magmatism of long-term mantle jets: Hawaiian Islands (Pacific Ocean) and Reunion Island (Indian Ocean), Petrologiya, 1994, no. 2, pp. 131–168

  50. Sobolev, A.V. and Danyushevsky, L.V., Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-ca boninite magmas, J. Petrol., 1994, vol. 35, no. 5, pp. 1183–1211.

    Article  Google Scholar 

  51. Sobolev, A.V. and Shaussidon, M., H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 1996, vol. 137, no. 1, pp. 45–55.

    Article  Google Scholar 

  52. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes, Magmatism in the Oceanic Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ, 1989, vol. 42, pp. 313–345.

    Google Scholar 

  53. Tamura, A. and Arai, S., Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle, Lithos, 2006, vol. 90, nos. 1–2, pp. 43–56.

    Article  Google Scholar 

  54. Tsukanov, N.V., Palechek, T.N., Soloviev, A.V., and Savelyev, D.P., Tectonostratigraphic complexes of the southern Kronotskii Paleoarc (Eastern Kamchatka): structure, age, and composition, Russ. J. Pac. Geol., 2014, vol. 8, no. 4, pp. 233–246.

    Article  Google Scholar 

  55. Tsukanov, N.V., Kramer, W., Skolotnev, S.G., et al., Ophiolites of the eastern peninsulas zone (Eastern Kamchatka): age, composition, and geodynamic diversity, Island Arc, 2007, vol. 16, no. 3, pp. 431–456.

    Article  Google Scholar 

  56. Varfalvy, V., Hebert, R., Bedard, J.H., and Lafleche, M.R., Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm mountain massif, bay of islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas, Can. Mineral., 1997, vol. 35, no. 2, pp. 543–570.

    Google Scholar 

  57. Vysotskii, S.V., Ofiolitovye assotsiatsii ostrovoduzhnykh sistem Tikhogo okeana (Ophiolite Associations of the Pacific Island-Arc Systems), Vladivostok: DVO AN SSSR, 1986.

  58. Warr, L.N., IMA-CNMNC approved mineral symbols, Mineral. Mag., 2021, vol. 85, pp. 291–320.

    Article  Google Scholar 

  59. Zajacz, Z. and Halter, W., LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1021–1040.

    Article  Google Scholar 

  60. Zinkevich V.P., Konstantinovskaya E.A., Tsukanov N.V., et al., Akkretsionnaya tektonika Vostochnoi Kamchatki (Accretionary Tectonics of Eastern Kamchatka), Moscow: Nauka, 1993.

  61. Zinkevich, V.P. and Tsukanov, N.V., Formation of accrcetionary structure of Eastern Kamchatka in the Late Mesozoic–Early Cenozoic, Geotektonika, 1992, no. 4, pp. 97–112.

Download references

ACKNOWLEDGMENTS

The authors thank I.A. Roshchina, T.G. Kuz’mina, T.V. Romashova, and Ya.V. Bychkova for conducting the analytical work. The authors are grateful to E.V. Pushkarev (Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences) for constructive criticism that led the authors to remarkably improve the manuscript.

Funding

This study was carried out under a government-financed research project for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; the coauthors from other organizations of the Russian Academy of Sciences conducted this study under respective government-financed research projects for their institutions. The participation of D.P. Savelyev was supported by the Russian Science Foundation, project no. 22-27-00029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Bazylev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazylev, B.A., Portnyagin, M.V., Savelyev, D.P. et al. Subduction and Oceanic Magmatism Records in Plutonic Rocks of the Kamchatsky Mys Ophiolite, Eastern Kamchatka. Petrology 31, 338–357 (2023). https://doi.org/10.1134/S0869591123030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123030025

Keywords:

Navigation