Skip to main content
Log in

Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Melt inclusions and hosting them highly magnesian olivine from rocks of Kamchatka and the Western Aleutian island arc were analyzed for copper content by LA-ICP-MS to determine the copper partition coefficient in primitive island-arc magmas. Based on measurements of 45 olivine–melt pairs, this coefficient was determined to be 0.028 ± 0.009 (2σ), which is the lowest value among previously published data. Mass-balance calculations of copper in a typical mantle peridotite using obtained partition coefficient indicate that its content in peridotite and primary mantle magmas is mainly determined by mantle sulfide. The Cu partition coefficient was also used to calculate the copper content in parental magmas of volcanoes of the Central Kamchatka Depression. Estimates obtained using copper content in phenocrysts of primitive olivine (Fo > 88 mol %) from these rocks are, on average, 139 ± 58 ppm (2σ), which exceed copper contents in primitive basalts (MgO > 8.5 wt %) of mid-ocean ridges (MORB 93 ± 31 ppm). This suggests the primary enrichment of Central Kamchatka magmas in copper and correlates with their more oxidizing conditions of formation as compared to MORB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. and Green, T., Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior, Contrib. Mineral. Petrol., 2006, vol. 152, no. 1, pp. 1–17.

    Article  Google Scholar 

  • Audetat, A. and Pettke, T., Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA), J. Petrol., 2006, vol. 47, no. 10, pp. 2021–2046.

    Article  Google Scholar 

  • Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine-orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  • Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N., Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.

    Article  Google Scholar 

  • Chiaradia, M., Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geosci., 2014, vol. 7, no. 1, pp. 43–46.

    Article  Google Scholar 

  • Churikova, T., Dorendorf, F., and Worner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol., 2001, vol. 42, no. 8, pp. 1567–1593.

    Article  Google Scholar 

  • Cline, J.S. and Bodnar, R.J., Can economic porphyry copper mineralization be generated by typical calc-alkaline melt?, J. Geophys. Res., 1991, vol. 96, pp. 8113–8126.

    Article  Google Scholar 

  • Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 68–83.

    Article  Google Scholar 

  • Danyushevsky, L.V., McNeill, A.W., and Sobolev, A.V., Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chem. Geol., 2002, vol. 183, pp. 5–24.

    Article  Google Scholar 

  • Dullo, F.-C., Baranov, B., and van den Bogaard, C., FS Sonne Cruise report SO201-2, IFM-GEOMAR Reports, 2009, no. 35, pp. 15–20.

    Google Scholar 

  • Fellows, S.A. and Canil, D., Experimental study of the partitioning of Cu during partial melting of Earth’s mantle, Earth Planet. Sci. Lett., 2012, vol. 337-338, pp. 133–143.

    Article  Google Scholar 

  • Gaetani, G.A. and Grove, T.L., Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 9, pp. 1829–1846.

    Article  Google Scholar 

  • Gale, A., Dalton, C.A., Langmuir, C.H., et al., The mean composition of ocean ridge basalts, Geochem., Geophys., Geosyst., 2013, vol. 14, pp. 489–518. doi 10.1029/2012GC004334

    Article  Google Scholar 

  • Gorbach, N., Portnyagin, M., and Tembrel, I., Volcanic structure and composition of Old Shiveluch Volcano, Kamchatka, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 193–208.

    Article  Google Scholar 

  • Jenner, F.E. and O’Neill, H.S.C., Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem., Geophys., Geosyst., 2012, vol. 13, Q02005. doi 10.01029/02011GC004009

    Google Scholar 

  • Jochum, K.P., Stoll, B., Herwig, K., et al., MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem., Geophys., Geosyst., 2006, vol. 7, Q02008, doi 10.1029/2005GC001060

    Article  Google Scholar 

  • Jugo, P.J., Luth, R.W., and Richards, J.P., Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 2, pp. 497–503.

    Article  Google Scholar 

  • Jugo, P.J., Wilke, M., and Botcharnikov, R.E., Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 5926–5938.

    Article  Google Scholar 

  • Kamenetsky, V.S., Crawford, A.J., and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, J. Petrol., 2001, vol. 42, no. 4, pp. 655–671.

    Article  Google Scholar 

  • Kamenetsky, V.S., Davidson, P., Mernagh, T.P., et al., Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids?, Chemical Geol., 2002, vol. 183, pp. 349–364.

    Article  Google Scholar 

  • Lee, C.-T.A., Luffi, P., Chin, E.J., et al., Copper systematics in arc magmas and implications for crust–mantle differentiation, Science, 2012, vol. 336, no. 6077, pp. 64–68.

    Article  Google Scholar 

  • Li, Y. and Audetat, A., Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions, Earth Planet. Sci. Lett., 2012, vol. 355, pp. 327–340.

    Article  Google Scholar 

  • Liu, X.C., Xiong, X.L., Audetat, A., et al., Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions, Geochim. Cosmochim. Acta, 2014, vol. 125, pp. 1–22.

    Article  Google Scholar 

  • Liu, X., Xiong, X., Audétat, A., and Li, Y., Partitioning of Cu between mafic minerals, Fe–Ti oxides and intermediate to felsic melts, Geochim. Cosmochim. Acta, 2015, vol. 151, pp. 86–102.

    Article  Google Scholar 

  • Mironov N.L., and Portnyagin, M.V., Relations between redox conditions of mantle melting and contents of copper and sulfur in primary magmas by the example of Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean), Petrologiya, 2017 (in press).

    Google Scholar 

  • Mungall, J.E., Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, vol. 30, no. 10, pp. 915–918.

    Article  Google Scholar 

  • Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O content and conditions of parent magma origin for Gorely Volcano (Southern Kamchatka) estimated by trace element thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 1, pp. 100–103.

    Article  Google Scholar 

  • Nikogosian, I.K. and Sobolev, A.V., Ion-microprobe analysis of melt inclusions in olivine: experience in estimating the olivine–melt partition coefficients of trace elements, Geochem. Int., 1997, vol. 35, no. 2, pp. 119–126.

    Google Scholar 

  • Noll, Jr.P.D., Newsom, H.E., Leeman, W.P., and Ryan, J.G., The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 4, pp. 587–611.

    Article  Google Scholar 

  • Portnyagin, M. and Manea, V.C., Mantle temperature control on composition of arc magmas along the Central Kamchatka depression, Geology, 2008, vol. 36, no. 7, pp. 519–522.

    Article  Google Scholar 

  • Portnyagin, M., Bindeman, I., Hoernle, K., and Hauff, F., Geochemistry of primitive lavas of the Central Kamchatka Depression: magma generation at the edge of the Pacific Plate, Volcanism and Subduction: The Kamchatka Region, Eichelberger J., Gordeev E., Kasahara M., Izbekov P., and Lees J. Eds., Washington DC: Amer. Geophys. Union, 2007a, vol. 172, pp. 203–244.

    Google Scholar 

  • Portnyagin, M.V., Hoernle, K., Plechov, P.Y., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007b, vol. 255, nos. 1–2, pp. 53–69.

    Article  Google Scholar 

  • Portnyagin, M., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subductionrelated open magmatic systems, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 133–155.

    Article  Google Scholar 

  • Richards, J.P., Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geol. Rev., 2011, vol. 40, no. 1, pp. 1–26.

    Article  Google Scholar 

  • Richards, J.P., The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny, Lithos, 2015, vol. 233, pp. 27–45.

    Article  Google Scholar 

  • Ripley, E.M. and Brophy, J.G., Solubility of copper in a sulfur-free mafic melt, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5027–5030.

    Article  Google Scholar 

  • Severs, M.J., Beard, J.S., Fedele, L., et al., Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICP-MS analysis of silicate melt inclusions, Geochim. Cosmochim. Acta, 2009, vol. 73, no. 7, pp. 2123–2141.

    Article  Google Scholar 

  • Søager, N., Portnyagin, M.V., Hoernle, K., et al., Olivine major and trace element compositions in Southern Payenia basalts, Argentina: evidence for pyroxenite–peridotite melt mixing in a backarc setting, J. Petrol., 2015, vol. 56, no. 8, pp. 1495–1518.

    Article  Google Scholar 

  • Sobolev, A.V., Migdisov, A.A., and Portnyagin, M.V., Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus, Petrology, 1996, vol. 4, no. 3, pp. 326–336.

    Google Scholar 

  • Sobolev, A., Asafov, E., Gurenko, A., et al., Komatiites reveal an Archean hydrous deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.

    Article  Google Scholar 

  • Stolper, E. and Newman, S., The role of water in the petrogenesis of Mariana Trough magmas, Earth Planet. Sci. Lett., 1994, vol. 121, nos. 3–4, pp. 293–325.

    Article  Google Scholar 

  • Wan, Z.H., Coogan, L.A., and Canil, D., Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer, Am. Mineral., 2008, vol. 93, no. 7, pp. 1142–1147.

    Article  Google Scholar 

  • Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., et al., Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians, J. Petrol., 1994, vol. 35, no. 1, pp. 163–204.

    Article  Google Scholar 

  • Yogodzinski, G.M., Lees, J.M., Churikova, T.G., et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature, 2001, vol. 409, pp. 500–504.

    Article  Google Scholar 

  • Zajacz, Z., Seo, J.H., Candela, P.A., et al., The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 10, pp. 2811–2827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Portnyagin.

Additional information

Original Russian Text © M.V. Portnyagin, N.L. Mironov, D.P. Nazarova, 2017, published in Petrologiya, 2017, Vol. 25, No. 4, pp. 419–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portnyagin, M.V., Mironov, N.L. & Nazarova, D.P. Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka. Petrology 25, 419–432 (2017). https://doi.org/10.1134/S086959111704004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111704004X

Navigation