Skip to main content
Log in

Trace Elements in Olivine of Volcanic Rocks: Application to the Study of Magmatic Systems

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A quantitative local analytical method with the application of inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) was tested at Vernadsky Institute for the determination of contents of trace elements (Cu, Zn, Co, Ni, Mn, Cr, Sc, V, Ca, Ti, Al, Y, and REE) in olivine. Olivine phenocrysts from volcanic rocks of various geological settings have been studied: island-arc basalts, mid-ocean ridge (MOR) basalts, and high-alkaline continental volcanic rocks. The contents of some elements (Ni, Co, Mn, Cr, Sc, and Zn) systematically vary during the evolution of the composition of olivine, and the concentration fields of these elements in olivine from different settings overlap one another. At the same time, the contents of some other elements (Ca, Al, Ti, V, and Cu) fundamentally differ in olivine from different geological settings. Copper content in olivine from oceanic tholeiites and highly alkaline continental volcanics is 1–3 ppm, which is systematically lower than copper content in olivine from island-arc basalts (3–9 ppm). The concentrations of vanadium in olivine in MOR basalts are higher than in island-arc and alkaline continental ones, which may be due to relatively more reduced crystallization conditions as more favorable for the incorporation of V3+ into the olivine structure. Variations in the distribution coefficients of trace elements between olivine and silicate melt (\(D_{{{\text{element}}}}^{{{{Ol} \mathord{\left/ {\vphantom {{Ol} M}} \right. \kern-0em} M}}}\)) were determined for volcanic rocks from Kamchatka, the Bouvet Triple Junction, and Gaussberg volcano. It has been demonstrated that the unusually high values \(D_{{{\text{Ni}}}}^{{{{Ol} \mathord{\left/ {\vphantom {{Ol} M}} \right. \kern-0em} M}}}\) of \(D_{{{\text{Ni}}}}^{{{{Ol} \mathord{\left/ {\vphantom {{Ol} M}} \right. \kern-0em} M}}}\) = 50–150 previously identified for the lamproites of Gaussberg volcano indicate a mismatch between the composition of the quenched glass and the composition of the equilibrium melt for olivine phenocrysts. When using the bulk compositions of Gaussberg rocks, values of \(D_{{{\text{Ni}}}}^{{{{Ol} \mathord{\left/ {\vphantom {{Ol} M}} \right. \kern-0em} M}}}\) = 11–21 were obtained, which correspond to experimental estimates for high-potassium rocks. The redox crystallization conditions of the studied rocks were estimated using several oxybarometers based on the distribution of vanadium between coexisting olivine and melt. These values were: ΔQFM= +0.6 to +1.5 for oceanic tholeiites of the Bouvet Triple Junction area, South Atlantic, and ΔQFM = +1.5 to +2.4 for Mutnovsky volcano, Kamchatka. Estimates of the redox crystallization conditions of the highly alkaline rocks of Gaussberg volcano significantly vary depending on which model is chosen: ΔQFM= +0.2 to +4.8, which may be due to the strong effect of K2O content in the melt involved in one of the models. The newly acquired analytical data confirmed the possibility of using contents of trace elements in olivine to characterize igneous systems from different geological settings and highlighted the need for additional experimental studies on the distribution of these elements between olivine and melt, especially in highly alkaline systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. J. Adam and T. Green, “Trace element partitioning between mica and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior,” Contrib. Mineral. Petrol. 152 (1), 1–17 (2006).

    Article  Google Scholar 

  2. A. Audetat and T. Pettke, “Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA),” J. Petrol. 47 (10), 2021–2046 (2006).

    Article  Google Scholar 

  3. C. G. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  Google Scholar 

  4. V. G. Batanova, A. V. Sobolev, and D. V. Kuzmin, “Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser,” Chem. Geol. 419, 149–157 (2015).

    Article  Google Scholar 

  5. V. G. Batanova, J. M. Thompson, L. V. Danyushevsky, M. V. Portnyagin, D. Garbe-Schönberg, E. Hauri, J. I. Kimura, Q. Chang, R. Senda, K. Goemann, C. Chauvel, S. Campillo, D. A. Ionov, and A. V. Sobolev, “New olivine reference material for in situ microanalysis,” Geostand. Geoanal. Res. 419, 149–221 (2019).

    Google Scholar 

  6. P. Beattie, “Systematics and energetics of trace–element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning,” Chem. Geol. 117, 57–71 (1994).

    Article  Google Scholar 

  7. Y. Bussweiler, A. Giuliani, A. Greig, B. A. Kjarsgaard, D. Petts, S. E. Jackson, N. Barrett, Y. Luo, and D. G. Pearson, “Trace element analysis of high-Mg olivine by LA-ICP-MS—Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites,” Chem. Geol. 524, 136–157 (2019).

    Article  Google Scholar 

  8. D. Canil, “Vanadium partitioning and the oxidation state of Archaean komatiite magmas,” Nature 389, 842–845 (1997).

    Article  Google Scholar 

  9. D. Canil, “Vanadium in peridotites, mantle redox and tectonic environments: Archean to present,” Earth Planet. Sci. Lett. 195, 75–90 (2002).

    Article  Google Scholar 

  10. D. Canil and Y. Fedortchouk, “Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites,” Can. Mineral. 39, 319–330 (2001).

    Article  Google Scholar 

  11. Y. Cao, C. Y. Wang, and B. Wei, “Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni–Cu sulfide mineralization,” Am. Mineral. 105, 1841–1856 (2020).

    Article  Google Scholar 

  12. A. A. Chashchin, Yu. A. Martynov, A. B. Perepelov, N. I. Ekimova, and T. P. Vladimirova, “Physical and chemical conditions of the formation and evolution of Late Pleistocene–Holocene magmas of the Gorely and Mutnovsky volcanoes, Southern Kamchatka,” Russ. J. Pac. Geol. 5 (4), 348–368 (2011).

    Article  Google Scholar 

  13. L. A. Coogan, A. D. Saunders, and R. N. Wilson, “Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces,” Chem. Geol. 368, 1–10 (2014).

    Article  Google Scholar 

  14. L. V. Danyushevsky, “The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas,” J. Volcanol. Geotherm. Res. 110, 265–280 (2001).

    Article  Google Scholar 

  15. L. V. Danyushevsky and P. Plechov, “Petrolog3: Integrated software for modeling crystallization processes,” Geochem. Geophys. Geosyst. 12, (2011). https://doi.org/10.1029/2011GC003516

  16. De J. C. M. Hoog L. Gall and D. H. Cornell, “Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry,” Chem. Geol. 270, 196–215 (2010).

    Article  Google Scholar 

  17. S. Demouchy and O. Alard, “Hydrogen, trace, and ultra‑trace element distribution in natural olivines,” Contrib. Mineral. Petrol. 176 (26) (2021).

  18. S. Duggen, M. Portnyagin, J. Baker, D. Ulfbeck, K. Hoernle, D. Garbe-Schönberg, and N. Grassineau, “Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting,” Geochim. Cosmochim. Acta 71, 452–480 (2007).

    Article  Google Scholar 

  19. T. M. Evans, H. St.C. O’Neill, and J. Tuff, “The influence of melt composition on the partitioning of REEs,Y, Sc, Zr and Al between forsterite and melt in the system CMAS,” Geochim. Cosmochim. Acta 72, 5708–5721 (2008).

    Article  Google Scholar 

  20. S. A. Fellows and D. Canil, “Experimental study of the partitioning of Cu during partial melting of Earth’s mantle,” Earth Planet. Sci. Lett. 337–338, 133–143 (2012).

    Article  Google Scholar 

  21. S. F. Foley, “The oxidation state of lamproitic magmas,” Tschermak’s Mineral. Petrogr. Mitt. 34, 217–238 (1985).

    Article  Google Scholar 

  22. S. F. Prelevic D. Foley, T. Rehfeldt, and D. E. Jacob, “Minor and trace elements in olivines as probes into early igneous and mantle melting processes,” Earth Planet. Sci. Lett. 363, 181–191 (2013).

    Article  Google Scholar 

  23. S. F. Foley and G. A. Jenner, “Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite,” Lithos 75, 19–38 (2004).

    Article  Google Scholar 

  24. C. E. Ford, D. G. Russel, J. A. Graven, and M. R. Fisk, “Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn,” J. Petrol. 24, 256–265 (1983).

    Article  Google Scholar 

  25. G. A. Gaetani and T. L. Grove, “Partitioning of moderately siderophile elements among olivine, silicate melt and sulfide melts: Constraints on core formation on the Earth and Mars,” Geochim. Cosmochim. Acta 32, 1057–1086 (1997).

    Google Scholar 

  26. G. A. Gaetani and E. B. Watson, “Open system behavior of olivine-hosted melt inclusions,” Earth Planet. Sci. Lett. 183, 27–41 (2000).

    Article  Google Scholar 

  27. M. Gavrilenko, C. Herzberg, C. Vidito, M. J. Carr, T. Tenner, and A. Ozerov, “A calciumin-olivine geohygrometer and its application to subduction zone magmatism,” J. Petrol. 57, 1811–1832 (2016).

    Article  Google Scholar 

  28. C. Herzberg, “Identification of source lithology in the Hawaiian and Canary islands: implications for origins,” J. Petrol., 52 (1), 113–146 (2011).

    Article  Google Scholar 

  29. K. P. Jochum, L. Nohl, K. Herwig, E. Lammel, B. Stoll, and A. W. Hofmann, “GeoReM: A new geochemical database for reference materials and isotopic standards,” Geostand. Geoanal. Res. 29, 333–338 (2005).

    Article  Google Scholar 

  30. K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, and D. A. Frick, “Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines,” Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  31. V. S. Kamenetsky, M. Zelenski, A. Gurenko, M. Portnyagin, K. Ehrig, M. Kamenetsky, T. Churikova, and S. Feig, “Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): part II. Composition, liquidus assemblage and fractionation of the silicate melt,” Chem. Geol. 471, 92–110 (2017).

    Article  Google Scholar 

  32. A. A. Korneeva, N. Nekrylov, V. Kamenetsky, M. Portnyagin, S. P. Krasheninnikov, D. P. Savelyev, A. Abersteiner, M. Kamenetsky, M. E. Zelenski, and V. Shcherbakov, “Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine–phyric rocks from Kamchatsky Mys (Kamchatka, Russia),” Lithos 370–371, 105657 (2020).

    Article  Google Scholar 

  33. A. Koshlyakova, A. Sobolev, S. Krasheninnikov, V. Batanova, and A. Borisov, “Ni partitioning between olivine and highly alkaline melts: An experimental study,” Chem. Geol. 587, 120615 (2022).

    Article  Google Scholar 

  34. Y. A. Kostitsyn, E. A. Belousova, S. A. Silantyev, N. S. Bortnikov, and M. O. Anosova, “Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks,” Geochem. Int. 53 (9), 759–785 (2015).

    Article  Google Scholar 

  35. M. Laubier, T. L. Grove, and C. H. Langmuir, “Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions,” Earth Planet. Sci. Lett. 392, 265–278 (2014).

    Article  Google Scholar 

  36. C. T. A. Lee, P. Luffi, E. J. Chin, R. Bouchet, R. Dasgupta, D. M. Morton, Roux V. Le, Q.-Z. Yin, and D. Jin, “Copper systematics in arc magmas and implications for crust–mantle differentiation,” Science. 336 (6077), 64–68 (2012).

    Article  Google Scholar 

  37. X. Liu, X. Xiong, A. Audetat, Y. Li, M. Song, L. Li, W. Sun, and X. Ding, “Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions,” Geochim. Cosmochim. Acta 125, 1–22 (2014).

    Article  Google Scholar 

  38. X. Li, Z. Zeng, W. Dan, H. Yang, X. Wang, B. Fang, and Q. Li, “Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back–arc basin,” Lithos 360–361, 105444 (2020).

    Article  Google Scholar 

  39. M. Locmelis, R. D. Arevalo, I. S. Puchtel, M. L. Fiorentini, and E. G. Nisbet, “Transition metals in komatiitic olivine: Proxies for mantle composition, redox conditions, and sulfide mineralization potential,” Am. Mineral. 104, 1143–1155 (2019).

    Article  Google Scholar 

  40. G. Mallmann and H. St. C. O’Neill, “The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb),” J. Petrol. 50, 1765–1794 (2009).

    Article  Google Scholar 

  41. G. Mallmann and H. St.G. O’Neill, “Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt,” J. Petrol. 54 (5), 933–949 (2013).

    Article  Google Scholar 

  42. A. K. Matzen, M. B. Baker, J. R. Beckett, and E. M. Stolper, “The temperature and pressure dependence of nickel partitioning between olivine and silicate melt,” J. Petrol. 54, 2521–2545 (2013).

    Article  Google Scholar 

  43. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuz’min, “Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Rus. Geol. Geophys. 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  44. N. A. Migdisova, N. M. Sushchevskaya, M. V. Portnyagin, and V. G. Batanova, “Rare elements in phenocrysts from leucitite lavas of Gaussberg Volcano, East Antarctica,” Geochem. Int. (in press).

  45. D. T. Murphy, K. D. Collerson, and B. S. Kamber, “Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments,” J. Petrol. 43(6), 981–1001 (2002).

    Article  Google Scholar 

  46. D. A. Neave, O. Shorttle, M. Oeser, S. Weyer, and K. Kobayashi, “Mantle-derived trace element variability in olivines and their melt inclusions,” Earth Planet. Sc. Lett. 483, 90–104 (2018).

    Article  Google Scholar 

  47. N. Nekrylov, V. S. Kamenetsky, D. P. Savelyev, N. V. Gorbach, A. Kontonikas-Charos, S. V. Palesskii, V. D. Shcherbakov, A. V. Kutyrev, O. L. Savelyeva, A. A. Korneeva, O. A. Kozmenko, and M. E. Zelenski, “Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas,” Lithos 412–413, 106608 (2022). https://doi.org/10.1016/j.lithos.2022.106608

    Article  Google Scholar 

  48. N. Nekrylov, D. Popov, P. Plechov, V. Shcherbakov, L. Danyushevsky, and O. V. Dirksen, “Garnet-pyroxenite-derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky volcano,” Petrology 26, 329–350 (2018).

    Article  Google Scholar 

  49. N. Nekrylov, D. V. Popov, P. Y. Plechov, V. D. Shcherbakov, and L. V. Danyushevsky, “The origin of the Late Quaternary back-arc volcanic rocks from Kamchatka: evidence from the compositions of olivine and olivine–hosted melt inclusions,” Contrib Mineral Petrol. 176, 71 (2021).

    Article  Google Scholar 

  50. P. Nikkola, G. H. Guðfinnsson, E. Bali, O. T. Ramo, T. Fusswinkel, and T. Thordarson, “Signature of deep mantle melting in South Iceland olivine,” Contrib. Mineral. Petrol. 174, 43 (2019). https://doi.org/10.1007/s00410-019-1580-8

    Article  Google Scholar 

  51. G. S. Nikolaev, A. A. Ariskin, G. S. Barmina, M. A. Nazarova, and R. R. Almeev, “Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel,” Geochem. Int. 54 (4), 301–320 (2016).

    Article  Google Scholar 

  52. A. A. Plechova, M. V. Portnyagin, and L. I. Bazanova, “The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky volcano,” Geochem. Int. 49 (8), 787–812 (2011).

    Article  Google Scholar 

  53. M. V. Portnyagin, N. L. Mironov, and D. P. Nazarova, “Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka,” Petrology 25, 419–432 (2017).

    Article  Google Scholar 

  54. X. Pu, R. A. Lange, and G. Moore, “A comparison of olivine–melt thermometers based on DMg and DNi: the effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts,” Am. Mineral. 102(4), 750–765 (2017).

    Article  Google Scholar 

  55. K. Putirka, Y. Tao, K. R. Hari, M. R. Perfit, M. G. Jackson, and R. Jr. Arevalo, “The mantle source of thermal plumes: trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter),” Am. Mineral. 103, 1253–1270 (2018).

    Article  Google Scholar 

  56. M. Regelous, C. G. Weinzierl, and K. M. Haase, “Controls on melting at spreading ridges from correlated abyssal peridotite—mid-ocean ridge basalt compositions,” Earth Planet. Sci. Lett. 449, 1–11 (2016).

    Article  Google Scholar 

  57. T. A. Shishkina, Storage Conditions and Degassing Processes of Low-K and High-Al Tholeiitic Island-Arc Magmas: Experimental Constraints and Natural Observations for Mutnovsky Volcano, Kamchatka, Ph.D. Thesis (Leibniz University Hannover, 2012).

  58. T. A. Shishkina, M. V. Portnyagin, R. E. Botcharnikov, R. R. Almeev, A. V. Simonyan, D. Garbe-Schönberg, S. Schuth, M. Oeser, and F. Holtz, “Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas,” Am. Mineral. 103, 369–383 (2018).

    Article  Google Scholar 

  59. N. Søager, M. Portnyagin, K. Hoernle, P. M. Holm, F. Hauff, and D. Garbe-Schönberg, “Olivine major and trace element compositions in southern Payenia Basalts, Argentina: Evidence for pyroxenite–peridotite melt mixing in a back-arc setting,” J. Petrol. 56 (8), 1495–1518 (2015).

    Article  Google Scholar 

  60. A. V. Sobolev, E. V. Asafov, A. A. Gurenko, N. T. Arndt, V. G. Batanova, M. V. Portnyagin, D. Garbe-Schönberg, and S. P. Krasheninnikov, “Komatiites reveal an Archean hydrous deep-mantle reservoir,” Nature 531, 628–632 (2016).

    Article  Google Scholar 

  61. A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, and I. K. Nikogosian, “An olivine-free mantle source of Hawaiian shield basalts,” Nature 434, 590–597 (2005).

    Article  Google Scholar 

  62. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. L. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, I. K. Nikogosian, A. Rocholl, I. A. Sigurdsson, N. M. Sushchevskaya, and M. Teklay, “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  63. C. O’Neill and H. St. C. Spandler, “Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications,” Contrib. Mineral. Petrol. 159, 791–818 (2010).

    Article  Google Scholar 

  64. C. Spandler, H. St.C. O’Neill, and V. S. Kamenetsky, “Survival times of anomalous melt inclusions: constraints from element diffusion in olivine and chromite,” Nature 447, 303–306 (2007).

    Article  Google Scholar 

  65. B. Su, Y. Chen, Q. Mao, D. Zhang, L. H. Jia, and S. Guo, “Minor elements in olivine inspect the petrogenesis of orogenic peridotites,” Lithos 344–345, 207–216 (2019).

    Article  Google Scholar 

  66. N. M. Sushchevskaya, E. V. Koptev–Dvornikov, A. A. Peive, D. M. Khvorov, B. V. Belyatskii, V. S. Kamenetskii, N. A. Migdisova, and S. G. Skolotnev, “Crystallization and geochemistry of tholeiitic magmas of the western termination of the Africa–Antarctic Ridge (Shpiss Ridge) in the Bouvet triple junction zone,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999).

    Google Scholar 

  67. N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41 (1), 1–20 (2003).

    Google Scholar 

  68. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. S. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Y. V. Bychkova, “Geochemical features of the Quaternary lamproitic lavas of Gaussberg volcano, East Antarctica: result of the impact of the Kerguelen plume,” Geochem. Int. 52 (12), 1030–1048 (2014).

    Article  Google Scholar 

  69. D. P. Tobelko, M. V. Portnyagin, S. P. Krasheninnikov, E. N. Grib, and P. Y. Plechov, “Compositions and formation conditions of primitive magmas of the Karymsky volcanic center, Kamchatka: evidence from melt inclusions and trace-element thermobarometry,” Petrology 27, 243–264 (2019).

    Article  Google Scholar 

  70. M. J. Toplis, “The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems,” Contrib. Mineral. Petrol. 149, 22–39 (2005).

    Article  Google Scholar 

  71. Van E. Achterbergh, C. G. Ryan, S. E. Jackson, and W. L. Griffin, “Data reduction software for LA-ICP-MS: appendix,” Laser Ablation – ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications,” ed. by P. J. Sylvester, Mineral. Ass. Can. Short Course Ser. 29, 239–243 (2001).

  72. Z. Wan, L. A. Coogan, and D. Canil, “Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer,” Am. Mineral. 93, 1142–1147 (2008).

    Article  Google Scholar 

  73. J. Wang, B.-X. Su, P. T. Robinson, Y. Xiao, Y. Bai, X. Liu, P. A. Sakyi, J.-J. Jing, C. Chen, Z. Liang, and Z.‑A. Bao, “Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic–ultramafic rocks,” Lithos 388–389, 106085 (2021).

    Article  Google Scholar 

  74. M. Zelenski, V. S. Kamenetsky, J. A. Mavrogenes, A. A. Gurenko, and L. V. Danyushevsky, “Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts,” Chem. Geol. 478, 102–111 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to Dr. Prof. A.A. Ariskin, an anonymous reviewer and the Associate Editor Dr. Prof. O.A. Lukanin for their helpful and constructive comments which helped to improve the manuscript.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 19-05-00990 (aimed at working out LA-ICP-MS analytical techniques) and government-financed research project for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences (electron probe microanalyses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shishkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, T.A., Anosova, M.O., Migdisova, N.A. et al. Trace Elements in Olivine of Volcanic Rocks: Application to the Study of Magmatic Systems. Geochem. Int. 61, 1–23 (2023). https://doi.org/10.1134/S0016702923010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923010068

Keywords:

Navigation