Skip to main content
Log in

Petrology and geochemistry of plutonic rocks in the Northwest Pacific Ocean and their geodynamic interpretation

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents data on the petrology and geochemistry of plutonic rocks dredged from the Stalemate Fracture Zone, Northwest Pacific Ocean, during Cruise SO201-1 of the R/V “Sonne”. We proposed also the reconstruction of their formation conditions and interpretation of their tectonic evolution. The genesis of gabbroids found among plutonic rocks composing the Cretaceous-Paleogene basement of the northwestern part of the Pacific Ocean was related to magmatism at the ancient spreading center and provides record of the evolution of the parental magmatic melts of N-MORB. Along with related peridotites, basalts, and dolerites, these rocks can be attributed to the disintegrated the Cretaceous-Paleogene oceanic lithosphere of the Pacific Ocean. The shallow mantle beneath the ancient oceanic crust of this area is made up of depleted magmatic spinel lherzolite, harzburgite, and dunite. The fact that gabbro-diorite and diorite that are not genetically related to the rocks of the Cretaceous-Paleogene basement of the Northwest Pacific occur at the eastern termination of the Stalemate Fracture Zone possibly reflects the complicated structure of the tectonic collage of rocks of different age that were produced in different geodynamic environments and were later tectonically brought together near the frontal portion of the Aleutian island arc. Judging by the isotopic-geochemical characteristics of these rocks, they cannot be classed with the family of oceanic plagiogranites. Deformations of the oceanic basement can be discerned throughout the whole Stalemate Fracture Zone as brecciation and large-amplitude vertical displacements within the oceanic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. H. Erickson and P. J. Grim, “Profiles of magnetic anomalies south of Aleutian Island Arc,” Geology 80, 1387–1390 (1969).

    Google Scholar 

  2. P. J. Grim and B. H. Erickson, “Fracture zones and magnetic anomalies south of Aleutian Trench,” J. Geophys. Res. 74, 1488–1494 (1969).

    Article  Google Scholar 

  3. T. J. Fullam, P. R. Supko, and R. E. Boyce, “Some aspects of Late Cenozoic sedimentation in the Bering Sea and North Pacific Ocean,” Initial Rep. Deep Sea Drill. Proj. 19, 887–896 (1973).

    Google Scholar 

  4. D. K. Rea and J. M. Dixon, “Late Cretaceous and Paleogene tectonic evolution of the North Pacific Ocean,” Earth Planet. Sci. Lett. 64, 67–73 (1983).

    Google Scholar 

  5. P. Lonsdale, “Paleogene history of the Kula Plate: offshore evidence and onshore implications,” Geol. Soc. Am. Bull. 100, 733–754 (1988).

    Article  Google Scholar 

  6. Shipboard Scientific Party, “Introduction to Leg 145: North Pacific Transect,” Initial Rep. Deep Sea Drill. Proj. 145, 5–7 (1993).

    Google Scholar 

  7. E. Krasnova, M. Portnyagin, S. Silantyev, R. Werner, F. Hauff, and K. Hoernle, “Major and trace-element geochemistry of ultramafic rocks from the Stalemate Fracture Zone (NW Pacific),” Goldschmidt Conference Abstract Volume (2011), Mineral. Mag. 75(3), 1236 (2011).

    Google Scholar 

  8. S. A. Silantyev, A. A. Novoselov, E. A. Krasnova, M. V. Portnyagin, F. Khauff, and R. Werner, “Silicification of peridotites at the Stalemate Fracture Zone (Northwestern Pacific): reconstruction of the conditions of low-temperature weathering and tectonic interpretation,” Petrology 20(1), 21–39 (2012).

    Article  Google Scholar 

  9. N. Hirano, E. Takahashi, J. Yamamoto, N. Abe, S. P. Ingle, I. Kaneoka, T. Hirata, J. Kimura, T. Ishii, Y. Ogawa, S. Machida, and K. Suyehiro, “Volcanism in response to plate flexure,” Science 313, 1426–1428 (2006).

    Article  Google Scholar 

  10. Y. Harigane, T. Mizukami, T. Morishita, K. Michibayashi, N. Abe, and N. Hirano, “Direct evidence for upper mantle structure in the NW Pacific Plate: microstructural analysis of a petit-spot peridotite xenolith,” Earth Planet. Sci. Lett. 302, 194–202 (2011).

    Article  Google Scholar 

  11. R. Werner and Shipboard Party, FS Sonne. FS, 2009. Fahrbericht. Cruise Report SO201-1b. KALMAR.N32, P62. http://www.ifm-geomar.de/fileadmin/ifm-geomar/fuer-alle/institut/publikationen/ifm-geomar-rep32.pdf

    Google Scholar 

  12. S. A. Silantyev, Yu. A. Kostitsyn, D. V. Cherkashin, H. J. B. Dick, P. B. Kelemen, N. N. Kononkova, and E. M. Kornienko, “Magmatic and metamorphic evolution of the oceanic crust in the western flank of the MAR crest zone at 5°44′N: investigation of cores from sites 1275B and 1275D, JOIDES Resolution Leg 209,” Petrology 16(4), 353–375 (2008)

    Article  Google Scholar 

  13. M. Wanke, M. Portnyagin, K. Hoernle, R. Werner, F. Hauff, P. van der Bogaard, and D. Garbe-Schonberg, “Bowers Ridge (Bering Sea): An Oligocene-Early Miocene island arc,” Geology 40(8), 687–690 (2012).

    Article  Google Scholar 

  14. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, 2nd Edition (Pearson Education Limited, Essex, 1992)

    Google Scholar 

  15. D. A. Vanko and F. C. Bishop, “Occurrence and origin of marialitic scapolite in the Humboldt lopolith, N.W. Nevada,” Contrib. Mineral. Petrol. 81, 277–289 (1982).

    Article  Google Scholar 

  16. B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J. Mandarino, W. V. Maresch, E. H. Nickel, N. M. S. Rock, J. C. Schumacher, D. C. Smith, N. C. N. Stephenson, L. Ungaretti, E. J. W. Whittaker, and G. Youzhi, “Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623–651 (1997).

    Google Scholar 

  17. S. A. Silantyev, “Origin conditions of the Mid-Atlantic Ridge plutonic complex at 13°–17° N,” Petrology 6(4), 351–388 (1998)

    Google Scholar 

  18. D. M. Shaw, “The geochemistry of scapolite. Part 1. Previous work and general mineralogy. Part II. Trace elements, petrology and general geochemistry,” J. Petrol 1, 218–261 (1960).

    Article  Google Scholar 

  19. C. R. Rebbert and J. M. Rice, “Scapolite-plagioclase exchange: Cl-CO3 scapolite solution chemistry and implications for peristerite plagioclase,” Geochim. Cosmochim. Acta 61(3), 555–567 (1997).

    Article  Google Scholar 

  20. J. M. Ferry, “A comparative study of geothermometers and geobarometers in pelitic schists from south-central Maine,” Am. Mineral. 65, 720–732 (1980).

    Google Scholar 

  21. M. G. Best and L. E. Weiss, “Mineralogical relations in some pelitic hornfelses from the southern Sierra Nevada, California,” Am. Mineral. 49, 1240–1266 (1964).

    Google Scholar 

  22. M. Wilson, Igneous Petrogenes (Unwin Hyman, Boston, 1989).

    Book  Google Scholar 

  23. S. A. Silantyev, L. Ya. Aranovich, and N. S. Bortnikov, “Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges,” Petrology 18(4), 369–383 (2010).

    Article  Google Scholar 

  24. A. Miyashiro and F. Shido, “Differentiation of gabbros in the Mid-Atlantic Ridge near 24° N,” Geochem. J. 14(4), 145–154 (1980).

    Article  Google Scholar 

  25. S. A. Silantyev and S. K. Zlobin, “Metamorphism of the Rocks of the Inner Slope of the northern Tonga trench,” in Oceanic Magmatism, Ed. by O. A. Bogatikov (Nauka, Moscow, 1986), pp. 250–262 [in Russian].

    Google Scholar 

  26. R. L. Rudnik and S. Gao, “Composiiton of the continental crust,” Treatise Geochem. 3, 1–62 (2003).

    Article  Google Scholar 

  27. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in Ocean Basins, Ed. by A. D. Saunders and M. J. Norry Geol. Soc. Spec. Publ. London 42, 313–345 (1989).

    Google Scholar 

  28. G. Faure, Principles of Isotope Geology (John Wileys, New York, 1986).

    Google Scholar 

  29. RIDGE Petrological Data Base. LDEO. 1999. http://petdb.ldeo.columbia.edu/petdb/)

  30. R. K. Workman and S. R. Hart, “Major and trace element composition of the depleted MORB mantle (DMM),” Earth Planet. Sci. Lett. 231(1–2), 53–72 (2005).

    Article  Google Scholar 

  31. M. G. Jackson and R. Dasgupta, “Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts,” Earth Planet. Sci. Lett. 276(1–2), 175–186 (2008). doi:10.1016/j.epsl.2008.09.023

    Article  Google Scholar 

  32. I. O. Norton, “Speculations on Cretaceous tectonic history of the Northwest Pacific and a tectonic origin for the Hawaii hotspot,” in The Origins of Melting Anomalies: Plumes, Plates, and Planetary Processes, Ed. by G. R. Foulger and D. M. Jurdy, Sp. Pap.-Geol. Soc. Am., No. 430, 451–470 (2006).

    Chapter  Google Scholar 

  33. T. L. Vallier, W. E. Dean, D. K. Rea, and J. Thiede, “Geologic evolution of Hess Rise, central North Pacific Ocean,” Geol. Soc. Am. Bull. 94(11), 1289–1307 (1983).

    Article  Google Scholar 

  34. J. K. Hiller and A. B. Watts, “Relationship between depth and age in the North Pacific Ocean,” J. Geophys. Res. 110, 1–22 (2005).

    Google Scholar 

  35. I. Van Bocxlaer, K. Roelants, S. D. Biju, J. Nagaraju, and F. Bossuyt, “Late Cretaceous vicariance in Gondwanan Amphibians,” PloS ONE, No. 1, 1–6 (2006).

    Google Scholar 

  36. D. K. Blackman, J. A. Karson, D. S. Kelley, et al., “Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30° N): implications for the evolution of an ultramafic oceanic core complex,” Marine Geophys. Res. 23, 443–469 (2002).

    Article  Google Scholar 

  37. T. Fujiwara, J. Li, T. Matsumoto, P. B. Keleme, B. E. Tucholke, and J. Casey, “Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma,” Geochem. Geophys. Geosyst., 2003, 4:10.1029/2002GC000364.

    Google Scholar 

  38. H. J. B. Dick, P. S. Meyer, S. Bloomer, S. Kirby, D. Stakes, and C. Mawer, “Lithostratigraphic evolution of an in situ section of oceanic layer 3,” Sci. Res. Initial Rep. Deep Sea Drill. Proj. 118, 439–538 (1991).

    Google Scholar 

  39. A. Ishikawa, E. Nakamura, and J. J. Mahoney, “Jurassic oceanic lithosphere beneath the southern Ontong Java Plateau: Evidence from xenoliths in alnoite, Malaita, Solomon Islands,” Geology 33(5), 393–396 (2005).

    Article  Google Scholar 

  40. S. O. Schlanger, H. C. Jenkyns, and I. Premoli-Silva, “Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions,” Earth Planet. Sci. Lett. 52, 435–449 (1981).

    Article  Google Scholar 

  41. W. W. Sager and H.-C. Han, “Rapid formation of Shatsky Rise oceanic plateau inferred from its magnetic anomaly,” Nature 364, 610–613 (1993).

    Article  Google Scholar 

  42. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25(4), 956–983 (1984).

    Article  Google Scholar 

  43. G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  44. N. H. S. Oliver, T. J. Rawling, I. Cartwright, and P. J. Pearson, “Scapolitization in an extension-related hydrothermal system, Mary Kathleen, Australia,” J. Petrol. 35 Part 6, 1455–1491 (1994).

    Article  Google Scholar 

  45. S. F. Mazhari, S. Amini, J. Ghalamghash, and F. Bea, “Metasomatic stages and scapolitization effects on chemical composition of Pasveh Pluton, NW Iran,” J. Earth Sci. 22(5), 619–631 (2011).

    Article  Google Scholar 

  46. T. Yoshino and M. Satish-Kumar, “Origin of scapolite in deep-seated metagabbros of the Kohistan Arc, NW Himalayas,” Contrib. Mineral. Petrol. 140(5), 511–531 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silantyev.

Additional information

Original Russian Text © S.A. Silantyev, M.V. Portnyagin, E.A. Krasnova, F. Hauff, R. Werner, D.V. Kuzmin, 2014, published in Geokhimiya, 2014, Vol. 52, No. 3, pp. 195–213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silantyev, S.A., Portnyagin, M.V., Krasnova, E.A. et al. Petrology and geochemistry of plutonic rocks in the Northwest Pacific Ocean and their geodynamic interpretation. Geochem. Int. 52, 179–196 (2014). https://doi.org/10.1134/S0016702914030082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914030082

Keywords

Navigation