Skip to main content
Log in

Archaeal Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The archaeal composition of permafrost samples taken during the drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. This study is based on an analysis of the V4 region of the 16S rRNA gene, carried out using next-generation sequencing. The general phyla of the Archaea domain are Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Asgardarchaea. As a result of a phylogenetic analysis of the dominant operational taxonomic units, representatives of methanogenic and methane- and ammonium-oxidizing archaea, as well as heterotrophic archaea, are found. The methanogenic archaea of Euryarchaeota phylum, Methanobacteria class, are found in permafrost with controversial genesis, while the methane-oxidizing archaea of Methanomicrobia class Methanosarcinales order are found in the marine permafrost at cape Finneset: the ANME-2a, -2b group in layers of 8.6 and 11.7 m and the ANME-2d group (Candidatus Methanoperedens) in a layer of 6.5 m. Ammonium-oxidizing archaea of phylum Thaumarchaeota is present in all types of permafrost, while the order of Nitrososphaerales is found in permafrost with controversial genesis and the order Nitrosopumilales is in permafrost with marine and controversial genesis. Representatives of phylum Bathyarchaeota are found stratigraphically in the most ancient samples under study. Asgardarchaeota superfylum is excluded in the layers of permafrost with marine genesis and is represented by the phyla Lokiarchaeota, Thorarchaeota, and an unclassified group belonging to this superphylum. The presence of methane, ethylene, and ethane in the permafrost of the first sea terrace of Cape Finnemet at a depth of 11.7 m, as well as the composition of the archaeal community, give us reason to assume that, before freezing, microbiological processes of anaerobic methane oxidation took place in it, probably received from Tertiary rocks. The results of both this and previous works present the Spitsberen permafrost as a rich archive of genetic information of little-studied prokaryotic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Krüger, M., Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania, Environ. Microbiol., 2006, vol. 8, no. 4, pp. 574–590. https://doi.org/10.1111/j.1462-2920.2005.00922.x

    Article  Google Scholar 

  2. Alperin, M.J. and Reeburgh, W.S., Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol., 1985, vol. 50, no. 4, pp. 940–945. https://doi.org/10.1128/aem.50.4.940-945.1985

    Article  Google Scholar 

  3. Amaral-Zettler, L.A., Rocca, J.D., Lamontagne, M.G., Dennett, M.R., and Gast, R.J., Changes in microbial community structure in the wake of Hurricanes Katrina and Rita, Environ. Sci. Technol., 2008, vol. 42, no. 24, pp. 9072–9078. https://doi.org/10.1021/es801904z

    Article  Google Scholar 

  4. Beulig, F., Røy, H., McGlynn, S.E., and Jørgensen, B.B., Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea, ISME J., 2019, vol. 13, no. 2, pp. 250–262. https://doi.org/10.1038/s41396-018-0273-z

    Article  Google Scholar 

  5. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, no. 8, pp. 852–857; Erratum: Nat. Biotechnol., 2019, vol. 37, no. 9, p. 1091. https://doi.org/10.1038/s41587-019-0209-9

    Article  Google Scholar 

  6. Borrel, G., Joblin, K., Guedon, A., Colombet, J., Tardy, V., Lehours, A.C., and Fonty, G., Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, no. 7, pp. 1625–1629. https://doi.org/10.1099/ijs.0.034538-0

    Article  Google Scholar 

  7. Bueno de Mesquita, C.P.B., Schmidt, S.K., and Suding, K.N., Litter-driven feedbacks influence plant colonization of a high elevation early successional ecosystem, Plant Soil, 2019, vol. 444, no. 1, pp. 71–85. https://doi.org/10.1007/s11104-019-04242-3

    Article  Google Scholar 

  8. Chao, A., Nonparametric estimation of the number of classes in a population, Scand. J. Stat.,1984, vol. 11, pp. 265–270.

    Google Scholar 

  9. Chernov, R.A. and Murav’ev, A.Y., Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard), Led Sneg, 2018, vol. 58, no. 4, pp. 462–472.

    Google Scholar 

  10. Cho, H., Hyun, J.H., You, O.R., Kim, M., Kim, S.H., Choi, D.L., Green, S.J., and Kostka, J.E., Microbial community structure associated with biogeochemical processes in the sulfate–methane transition zone (SMTZ) of gas-hydrate-bearing sediment of the Ulleung Basin, East Sea, Geomicrobiol. J., 2017, vol. 34, no. 3, pp. 207–219. https://doi.org/10.1080/01490451.2016.1159767

    Article  Google Scholar 

  11. Conrad, R., Chan, O.C., Claus, P., and Casper, P., Characterization of methanogenic Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany), Limnol. Oceanogr., 2007, vol. 52, no. 4, pp. 1393–1406. https://doi.org/10.4319/lo.2007.52.4.1393

    Article  Google Scholar 

  12. Demidov, N.E., Verkulich, S.R., Karaevskaya, E.S., Nikulina, A.L., and Savatyugin, L.M., First results of permafrost monitoring on the cryospheric site of the Russian Scientific Center on Spitsbergen (RSCS), Probl. Arkt. Antarkt., 2016, vol. 1, no. 4, pp. 67–79.

    Google Scholar 

  13. Demidov, N., Wetterich, S., Verkulich, S., Ekaykin, A., Meyer, H., Anisimov, M., Schirrmeister, L., Demidov, V., and Hodson, A.J., Geochemical signatures of pingo ice and its origin in Grøndalen, West Spitsbergen, Cryosphere, 2019, vol. 13, pp. 3155–3169. https://doi.org/10.5194/tc-13-3155-2019

    Article  Google Scholar 

  14. Demidov, N.E., Borisik, A.L., Verkulich, S.R., Wetterich, S., Gunar, A.Yu., Demidov, V.E., Zheltenkova, N.V., Koshurnikov, A.V., Mikhailova, V.M., Nikulina, A.L., Novikov, A.L., Savatyugin, L.M., Sirotkin, A.N., Terekhov, A.V., Ugrumov, Yu.V., and Schirrmeister, L., Geocryological and Hydrogeological Conditions of the Western Part of Nordenskiold Land (Spitsbergen Archipelago), Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 11, pp. 1376–1400. https://doi.org/10.1134/S000143382011002X

    Article  Google Scholar 

  15. De Wever, A., Muylaert, K., Van der Gucht, K., Pirlot, S., Cocquyt, C., Descy, J.P., Plisnier, P.-D., and Vyverman, W., Bacterial community composition in Lake Tanganyika: Vertical and horizontal heterogeneity, App-l. Environ. Microbiol., 2005, vol. 71, no. 9, pp. 5029–5037. https://doi.org/10.1128/AEM.71.9.5029-5037.2005

    Article  Google Scholar 

  16. Doerfert, S.N., Reichlen, M., Iyer, P., Wang, M., and Ferry, J.G., Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam, Int. J. Syst. Evol. Microbiol., vol. 59, no. 5, pp. 1064–1069. https://doi.org/10.1099/ijs.0.003772-0

  17. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W., Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics, Science, 2015, vol. 350, no. 6259, pp. 434–438. https://doi.org/10.1126/science.aac7745

    Article  Google Scholar 

  18. Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, no. 1, p. 6. https://doi.org/10.1186/2049-2618-2-6

  19. Fardeau, M.-L., Cayol, J.-L., and Ollivier, B., Methanocalculus, in Bergey’s Manual of Systematics of Archaea and Bacteria (BMSAB), Hoboken, N.J.: Wiley, 2019. https://hal.archives-ouvertes.fr/hal-02883889.

    Google Scholar 

  20. Forman, S.L., Lubinski, D.J., Ingolfsson, O., Zeeberg, J.J., Snyder, J.A., Siegert, M.J., and Matishov, G.G., A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia, Quat. Sci. Rev., 2004, vol. 23, pp. 1391–1434. https://doi.org/10.1016/j.quascirev.2003.12.007

    Article  Google Scholar 

  21. Good, I.J., The population frequencies of species and the estimation of population parameters, Biometrika, 1953, vol. 40, pp. 237–264. https://doi.org/10.1093/biomet/40.3-4.237

    Article  Google Scholar 

  22. Hamdan, L.J., Coffin, R.B., Sikaroodi, M., Greinert, J., Treude, T., and Gillevet, P.M., Ocean currents shape the microbiome of Arctic marine sediments, ISME J., 2013, vol. 7, no. 4, pp. 685–696.

    Article  Google Scholar 

  23. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education, 2017.

  24. Hernández, E.A., Piquet, A.M.T., Lopez, J.L., Buma, A.G., and Mac Cormack, W.P., Marine archaeal community structure from Potter Cove, Antarctica: High temporal and spatial dominance of the phylum Thaumarchaeota, Polar Biol., 2015, vol. 38, no. 2, pp. 117–130. https://doi.org/10.1007/s00300-014-1569-8

    Article  Google Scholar 

  25. Hoshino, T. and Inagaki, F., A comparative study of microbial diversity and community structure in marine sediments using poly (A) tailing and reverse transcription-PCR, Front. Microbiol., 2013, vol. 4, p. 160. https://doi.org/10.3389/fmicb.2013.00160

  26. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies, Appl. Environ. Microbiol., 2014, vol. 80, no. 16, pp. 5116–5123. https://doi.org/10.1128/AEM.01403-14

    Article  Google Scholar 

  27. Humlum, O., Instanes, A. and Sollid, J.L., Permafrost in Svalbard: A review of research history, climatic background and engineering challenges, Polar Res., 2003, vol. 22, pp. 191–215. https://doi.org/10.1111/j.1751-8369.2003.tb00107.x

    Article  Google Scholar 

  28. Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K.M., Saito, Y., Sakai, S., et al., Isolation of an archaeon at the prokaryote–eukaryote interface, Nature, 2000, vol. 577, no. 7791, pp. 519–525. https://doi.org/10.1038/s41586-019-1916-6

    Article  Google Scholar 

  29. Joblin, K.N., Naylor, G.E., and Williams, A.G., Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi, Appl. Environ. Microbiol., 1990, vol. 56, no. 8, pp. 2287–2295. https://doi.org/10.1128/aem.56.8.2287-2295.1990

    Article  Google Scholar 

  30. Jarvis, G.N., Strömpl, C., Burgess, D.M., Skillman, L.C., Moore, E.R., and Joblin, K.N., Isolation and identification of ruminal methanogens from grazing cattle, Curr. Microbiol., 2000, vol. 40, no. 5, pp. 327–332. https://doi.org/10.1007/s002849910065

    Article  Google Scholar 

  31. Jørgensen, S.L., Hannisdal, B., Lanzén, A., Baumberger, T., Flesland, K., Fonseca, R., Øvreås, L., Steen, I.H., Thorseth, I.H., Pedersen, R.B., and Schleper, C., Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge, Proc. Natl. Acad. Sci., 2012, vol. 109, no. 42, pp. E2846–E2855. https://doi.org/10.1073/pnas.1207574109

    Article  Google Scholar 

  32. Jørgensen, S.L., Thorseth, I.H., Pedersen, R.B., Baumberger, T., and Schleper, C., Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge, Front. Microbiol., 2013, vol. 4, p. 299. https://doi.org/10.3389/fmicb.2013.00299

  33. Jørgensen, B.B., Beulig, F., Egger, M., Petro, C., Scholze, C., and Røy, H., Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments, Geochim. Cosmochim. Acta, 2019, vol. 254, pp. 231–245. https://doi.org/10.1016/j.gca.2019.03.016

    Article  Google Scholar 

  34. Kallistova, A.Y., Merkel, A.Y., Tarnovetskii, I.Y., and Pimenov, N.V., Methane formation and oxidation by prokaryotes, Microbiology, 2017, vol. 86, no. 6, pp. 671–691. https://doi.org/10.1134/S0026261717060091

    Article  Google Scholar 

  35. Karaevskaya, E.S., Demchenko, L.S., Demidov, N.E., Rivkina, E.M., Bulat, S.A., and Gilichinsky, D.A., Archaeal diversity in permafrost sediments of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing, Microbiology, 2014, vol. 83, no. 4, pp. 398–406. https://doi.org/10.1134/S0026261714040092

    Article  Google Scholar 

  36. Karaevskaya, E.S., Demidov, N.E., Kazantsev, V.S., Elizarov, I.M., Kaloshin, A.G., Petrov, A.P., Karlov, D.S., Schirrmeister, L., Belov, A.A., and Wetterich, S., Bacterial communities of frozen quaternary sediments of marine origin on the coast of Western Spitsbergen, Geofiz. Protsessy Biosfera, 2021, vol. 20, no. 2, pp. 75–98. https://doi.org/10.21455/GPB2021.2-5

    Article  Google Scholar 

  37. Kato, S., Ikehata, K., Shibuya, T., Urabe, T., Ohkuma, M., and Yamagishi, A., Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor, Environ. Microbiol., 2015, vol. 17, no. 5, pp. 1817–1835. https://doi.org/10.1111/1462-2920.12648

    Article  Google Scholar 

  38. Kemnitz, D., Kolb, S., and Conrad, R., Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture, Environ. Microbiol., 2005, vol. 7, no. 4, pp. 553–565. https://doi.org/10.1111/j.1462-2920.2005.00723.x

    Article  Google Scholar 

  39. Koene-Cottaar F.H. and Schraa G. Anaerobic reduction of ethene to ethane in an enrichment culture, FEMS Microbiol. Ecol. 1998, vol. 25, no. 3, pp. 251–256.

  40. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  Google Scholar 

  41. Kurth, J.M., Smit, N.T., Berger, S., Schouten, S., Jetten, M.S.M., and Welte, C.U. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea, FEMS Microbiol. Ecol., 2019, vol. 95, no. 7, p. fiz082. https://doi.org/10.1093/femsec/fiz082

  42. Lai, M., Laonitisatr, W., Chen, Y., Ding, J., Wu, C., and Lai, S., Microbial communities of spring pits in Jing-Mei River at the southeastern Taipei basin, in Proceedings from the 2010 AGU Western Pacific Geophysics Meeting, 2010.

  43. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester, UK: Wiley, 1991, pp. 115– 175.

    Google Scholar 

  44. Lynch, R.C., King, A.J., Farías, M.E., Sowell, P., Vitry, C., and Schmidt, S.K., The potential for microbial life in the highest-elevation (> 6000 masl) mineral soils of the Atacama region, J. Geophys. Res.: Biogeosci., 2012, vol. 117, no. G2. https://doi.org/10.1029/2012JG001961

  45. Magurran, A.E., Ecological Diversity and Its Measurement, Princeton Univ. Press, 1988; Moscow: Mir, 1992.

  46. Mangerud, J., Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway, Boreas, 1972, vol. 1, no. 2, pp. 143–172.

    Article  Google Scholar 

  47. Merkel, A.Yu., Tarnovetskii, I.Yu., Podosokorskaya, O.A., and Toshchakov, S.V., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology, 2019, vol. 13, no. 6, pp. 671–680. https://doi.org/10.1134/S0026261719060110

    Article  Google Scholar 

  48. Miller, T.L., Wolin, M.J., de Macario, E.C., and Macario, A.J., Isolation of Methanobrevibacter smithii from human feces, Appl. Environ. Microbiol., 1982, vol. 43, no. 1, pp. 227–232. https://doi.org/10.1128/aem.43.1.227-232.1982

    Article  Google Scholar 

  49. Mitzscherling, J., Horn, F., Winterfeld, M., Mahler, L., Kallmeyer, J., Overduin, P, pp., Schirrmeister, L., Winkel, M., Grigoriev, M.N., Wagner, D., and Liebner, S., Microbial community composition and abundance after millennia of submarine permafrost warming, Biogeosciences, 2019, vol.16, pp. 3941–3958. https://doi.org/10.5194/bg-16-3941-2019

    Article  Google Scholar 

  50. Mori, K., Yamamoto, H., Kamagata, Y., Hatsu, M., and Takamizawa, K., Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 5, pp. 1723–1729. https://doi.org/10.1099/00207713-50-5-1723

    Article  Google Scholar 

  51. Okita, N., Hoaki, T., Suzuki, S., Hatamoto, M., Characteristics of microbial community structure at the seafloor surface of the Nankai Trough, J. Pure Appl. Microbiol., 2019, vol. 13, pp. 1917–1928. https://doi.org/10.22207/JPAM.13.4.04

    Article  Google Scholar 

  52. Oremland R.S. and Taylor B.F., Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms, Applied Microbiology, 1975, vol. 30, no. 4. pp. 707–709.

  53. Oshiki, M., Segawa, T., and Ishii, S., Nitrogen cycle evaluation (nice) chip for simultaneous analysis of multiple n cycle-associated genes, Appl. Environ. Microbiol., 2018, vol. 84, no. 8. https://doi.org/10.1128/AEM.02615-17

  54. Pan, J., Chen,Y., Wang, Y., Zhou, Z., and Li, M., Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6, Microb. Ecol., 2019, vol. 77, no. 2, pp. 417–428. https://doi.org/10.1007/s00248-018-1309-7

    Article  Google Scholar 

  55. Park, S.J., Kim, J.G., Jung, M.Y., Kim, S.J., Cha, I.T., Ghai, R., Martín-Cuadrado, A.-B., Rodrígues-Valera, F., and Rhee, S.K., Draft genome sequence of an ammonia-oxidizing archaeon,“Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the Arctic Circle, J. Bacteriol., 2012, vol. 194, no. 24, pp. 6948–6949.

    Article  Google Scholar 

  56. Pires, A.C., Cleary, D.F., Almeida, A., Cunha, Â., Dealtry, S., Mendonça-Hagler, L.C., Smalla, K., and Gomes, N.N.C., Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples, Appl. Environ. Microbiol., 2012, vol. 78, no. 16, pp. 5520–5528. https://doi.org/10.1128/AEM.00386-12

    Article  Google Scholar 

  57. Probst, A.J. and Moissl-Eichinger, C. “Altiarchaeales”: Uncultivated archaea from the subsurface, Life, 2015, vol. 5, no. 2, pp. 1381–1395. https://doi.org/10.3390/life5021381

    Article  Google Scholar 

  58. Qin, W., Heal, K.R., Ramdasi, R., Kobelt, J.N., Martens-Habbena, W., Bertagnolli, A.D., Amin, Sh.A., Walker, Ch.B., Urakawa, H., Könneke, M., Moffett, J.W., Armbrust, E.V., Ingalls, A.E., Jensen, G.J., Stahl, D.A., and Devol, A.H., Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 12, pp. 5067–5079. https://doi.org/10.1099/ijsem.0.002416

    Article  Google Scholar 

  59. Roussel, E.G., Sauvadet, A.L., Chaduteau, C., Fouquet, Y., Charlou, J.L., Prieur, D., and Cambon Bonavita, M.A., Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin, Environ. Microbiol., 2009, vol. 11, no. 9, pp. 2446–2462. https://doi.org/10.1111/j.1462-2920.2009.01976.x

    Article  Google Scholar 

  60. Salvigsen, O. and Høgvard, K., Glacial history, Holocene shoreline displacement and palaeoclimate based on radiocarbon ages in the area of Bockfjorden, north-western Spitsbergen, Svalbard, Polar Res., 2005, vol. 25, no. 1, pp. 15–24. https://doi.org/10.1111/j.1751-8369.2006.tb00147.x

    Article  Google Scholar 

  61. Seidel, M., Graue, J., Engelen, B., Köster, J., Sass, H., and Rullkötter, J., Advection and diffusion determine vertical distribution of microbial communities in intertidal sediments as revealed by combined biogeochemical and molecular biological analysis, Org. Geochem., 2012, vol. 52, pp. 114–129. https://doi.org/10.1016/j.orggeochem.2012.08.015

    Article  Google Scholar 

  62. Seitz, K.W., Lazar, C.S., Hinrichs, K.U., Teske, A.P., and Baker, B.J., Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction, ISME J., 2016, vol. 10, no. 7, pp. 1696–1705. https://doi.org/10.1038/ismej.2015.233

    Article  Google Scholar 

  63. Shima, S. and Thauer, R.K., Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea, Curr. Opin. Microbiol., 2005, vol. 8, no. 6, pp. 643–648. https://doi.org/10.1016/j.mib.2005.10.002

    Article  Google Scholar 

  64. Smith, D.R., Doucette-Stamm, L.A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier B., et al., Complete genome sequence of Methanobacterium thermoautotrophicum Delta H: Functional analysis and comparative genomics, J. Bacteriol., 1997, vol. 179, pp. 7135–7155. https://doi.org/10.1128/jb.179.22.7135-7155.1997

    Article  Google Scholar 

  65. Solov’eva, D.A., Savel’eva, L.A., Verkulich, S.R., and Zazovskaya, E.P., Postglacial changes in the natural environment in the area of the Barentsburg mine (West Spitsbergen Island), in Theory and Methods of Polar Science: Proceedings of International Youth Scientific Conference on the Polar Geodesy, Glaciology, Hydrology and Geophysics, St. Petersburg, 2018, pp. 213–222.

  66. Sørensen, K.B. and Teske, A., Stratified communities of active archaea in deep marine subsurface sediments, Appl. Environ. Microbiol., 2006, vol. 72, no. 7, pp. 4596–4603. https://doi.org/10.1128/AEM.00562-06

    Article  Google Scholar 

  67. Srinivas, T.N.R., Rao, S.N., Reddy, P.V.V., Pratibha, M.S., Sailaja, B., Kavya, B., and Shivaji, S., Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic, Curr. Microbiol., 2009, vol. 59, no. 5, pp. 537–547. https://doi.org/10.1007/s00284-009-9473-0

    Article  Google Scholar 

  68. Stauffert, M., Duran, R., Gassie, C., and Cravo-Laureau, C., Response of archaeal communities to oil spill in bioturbated mudflat sediments, Microb. Ecol., 2014, vol. 67, no. 1, pp. 108–119. https://doi.org/10.1007/s00248-013-0288-y

    Article  Google Scholar 

  69. Stieglmeier, M., Klingl, A., Alves, R.J., Rittmann, S.K.M., Melcher, M., Leisch, N., and Schleper, C., Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, no. 8, pp. 2738–2752. https://doi.org/10.1099/ijs.0.063172-0

    Article  Google Scholar 

  70. Svendsen, J.I. and Mangerud, J., Holocene glacial and climatic variations on Spitsbergen, Svalbard, Holocene, 1997, vol. 7, no. 1, pp. 45–57. https://doi.org/10.1177/095968369700700105

    Article  Google Scholar 

  71. Takai, K. and Horikoshi, K., Genetic diversity of Archaea in deep-sea hydrothermal vent environments, Genetics, 1999, vol. 152, no. 4, pp. 1285–1297.

    Article  Google Scholar 

  72. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, pp. 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  Google Scholar 

  73. Teske, A., Durbin, A., Ziervogel, K., Cox, C., and Arnosti, C., Microbial community composition and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard, Appl. Environ. Microbiol., 2011, vol. 77, no. 6, pp. 2008–2018. https://doi.org/10.1128/AEM.01507-10

    Article  Google Scholar 

  74. Thauer, R.K., Biochemistry of methanogenesis: A tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize lecture, Microbiology, 1998, vol. 144, no. 9, pp. 2377–2406. https://doi.org/10.1099/00221287-144-9-2377

    Article  Google Scholar 

  75. Timmers, P.H., Suarez-Zuluaga, D.A., van Rossem, M., Diender, M., Stams, A.J., Plugge, C.M., Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source, ISME J., 2016, vol. 10, no. 6, pp. 1400–1412.

    Article  Google Scholar 

  76. Treude, T., Krause, S., Steinle, L., Burwicz, E., Hamdan, L.J., Niemann, H., Feseker, T., Liebertau, V., Krastel, S., and Berndt, C., Biogeochemical consequences of nonvertical methane transport in sediment offshore northwestern Svalbard, J. Geophys. Res.: Biogeosci., 2020, vol. 125, no. 3, p. e2019JG005371. https://doi.org/10.1029/2019JG005371

  77. Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.L., Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments, Appl. Environ. Microbiol., 1999, vol. 65, no. 10, pp. 4375–4384. https://doi.org/10.1128/AEM.65.10.4375-4384.1999

    Article  Google Scholar 

  78. Webster, G., Sass, H., Cragg, B.A., Gorra, R., Knab, N.J., Green, C.J., Mathes, F., Fry, J.C., Weightman, A.J., and Parkes, R.J., Enrichment and cultivation of prokaryotes associated with the sulphate–methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions, FEMS Microbiol. Ecol., 2011, vol. 77, no. 2, pp. 248–263. https://doi.org/10.1111/j.1574-6941.2011.01109.x

    Article  Google Scholar 

  79. Winkel, M., Mitzscherling, J., Overduin, P.P., Horn, F., Winterfeld, M., Rijkers, R., Grigoriev, M.N., Knoblauch, Ch., Mangelsdorf, K., Wagner, D., and Liebner, S., Anaerobic methanotrophic communities thrive in deep submarine permafrost, Sci. Rep., 2018, vol. 8, no. 1, p. 1291. https://doi.org/10.1038/s41598-018-19505-9

  80. Wright, J.J., Microbial community structure and ecology of Marine Group A bacteria in the oxygen minimum zone of the Northeast subarctic Pacific Ocean, Ph.D. Dissertation, University of British Columbia, 2013. https://doi.org/10.14288/1.0074090.

  81. Xie, L.S., Xu, L., He, Y., Zhang, Y., Wang, J.H., and Xu, J., Archaeal diversity in the euphotic seawater at a slope in the northern South China Sea, Chin. J. Appl. Environ. Biol., 2017, vol. 23, pp. 21–27. https://doi.org/10.3724/SP.J.1145.2016.03005

    Article  Google Scholar 

  82. Yanagawa, K., Nunoura, T., McAllister, S., Hirai, M., Breuker, A., Brandt, L., House, Ch. H., Moyer, C.L., Birrien, J.-L., Aoike, K., Sunamura, M., Urabe, T., Mottl, M.J., and Takai, K., The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331), Front. Microbiol., 2013, vol. 4, p. 327. https://doi.org/10.3389/fmicb.2013.00327

  83. Zeglin, L.H., Wang, B., Waythomas, C., Rainey, F., and Talbot, S.L., Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska, Environ. Microbiol., 2016, vol. 18, no. 1, pp. 146–158. https://doi.org/10.1111/1462-2920.12924

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.Yu. Merkel (Vinogradsky Institute of Microbiology, Russian Academy of Sciences) for performing NGS analysis and consulting on the method; A.S. Nartov (NRC Kurchatov Institute – IREA) for measuring carbon-containing gases in permafrost; and M.Y. Cherbunina and D.G. Shmelev for consulting on the properties of methane in permafrost.

Funding

This research was supported by a grant from the Russian Science Foundation, project no. 19-77-10066 (to Nikita Demidov). Field work at the cryosphere test site near Barentsburg was carried out as part of the Russian Arctic Expedition to Spitsbergen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Karaevskaya, N. E. Demidov, V. S. Kazantsev, I. M. Elizarov, A. L. Petrov, D. S. Karlov, L. Schirrmeister, A. A. Belov or S. Wetterich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaevskaya, E.S., Demidov, N.E., Kazantsev, V.S. et al. Archaeal Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen. Izv. Atmos. Ocean. Phys. 57, 1254–1270 (2021). https://doi.org/10.1134/S0001433821100066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821100066

Keywords:

Navigation