Skip to main content
Log in

Role of sea ice in formation of wintertime arctic temperature anomalies

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Numerical experiments with the ECHAM5 atmospheric general circulation model (AGCM) using the empirical HadISST1.1 data on sea surface temperature (SST) and sea ice concentration (SIC) in the 20th century as boundary conditions are analyzed. The experiments show that the model correctly reproduces the wintertime Arctic warming in the last 30 years of the 20th century but is unable to reproduce mid-20th century warming. Because the wintertime Arctic surface air temperature changes are closely related to SIC anomalies, it is assumed that one reason for this discrepancy is the lack of a negative SIC anomaly in the prescribed boundary conditions during a mid-20th century warm period. It is also shown that the model with-out prescribed ice cover changes does not reproduce a temperature trend in the Arctic in recent 30 years of the 20th century. The experimental results indicate that the mid-20th century warming was accompanied by a significant negative anomaly of the wintertime Arctic sea ice extent comparable to current trends and also point to a considerable contribution of natural variability to modern climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Semenov and L. Bengtsson, “Modes of the wintertime Arctic temperature variability,” Geophys. Res. Lett. 30, L1781 (2003). doi: 10.1029/2003gl017112

    Article  Google Scholar 

  2. J. E. Overland, M. C. Spillane, D. B. Percival, et al., “Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record,” J. Clim. 17, 3263–3282 (2004).

    Article  Google Scholar 

  3. V. A. Semenov, “Structure of temperature variability in the high latitudes of the Northern Hemisphere,” Izv., Atmos. Ocean. Phys. 43(6), 687–695 (2007).

    Article  Google Scholar 

  4. L. Bengtsson, V. A. Semenov, and O. M. Johannessen, “The early twentieth-century warming in the Arctic-A possible mechanism,” J. Clim. 17, 4045–4057 (2004).

    Article  Google Scholar 

  5. G. V. Alekseev, V. F. Zakharov, N. E. Ivanov, et al., “Dependence between changes in length sea ice and air temperature in the Northern Hemisphere,” Mater. Glyatsiol. Issled. 99, 62 (2005).

    Google Scholar 

  6. V. A. Semenov, “Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region,” Dokl. Earth Sci. 418(1), 91–94 (2008).

    Article  Google Scholar 

  7. O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice coverage in transformation,” Science 286, 1937–1939 (1999).

    Article  Google Scholar 

  8. V. Ch. Khon and I. I. Mokhov, “Arctic climate changes and possible conditions of Arctic navigation in the 21st century,” Izv., Atmos. Ocean. Phys. 46(1), 14–20 (2010).

    Article  Google Scholar 

  9. J. C. Comiso, C. L. Parkinson, R. Gersten, et al., “Accelerated decline in the Arctic sea ice cover,” Geophys. Res. Lett. 35, L01703 (2008). doi: 10.1029/2007GL031972

    Article  Google Scholar 

  10. M. Y. Wang and J. E. Overland, “A sea ice free summer Arctic within 30 years?,” Geophys. Res. Lett. 36, L07502 (2009). doi: 10.1029/2009gl037820

    Google Scholar 

  11. V. M. Kattsov, G. V. Alekseev, T. V. Pavlova, et al., “Modeling the evolution of the World Ocean ice cover in the 20th and 21st centuries,” Izv., Atmos. Ocean. Phys. 43(2), 142–157 (2007).

    Article  Google Scholar 

  12. J. Stroeve, M. M. Holland, W. Meier, et al., “Arctic sea ice decline: Faster than forecast,” Geophys. Res. Lett. 34(9), L09501 (2007). doi: 10.1029/2007gl029703

    Article  Google Scholar 

  13. G. V. Alekseev, A. I. Danilov, V. M. Kattsov, et al., “Changes in the climate and sea ice of the Northern Hemisphere in the 20th and 21st centuries from data of observations and modeling,” Izv., Atmos. Ocean. Phys. 45(6), 675–686 (2009).

    Article  Google Scholar 

  14. B. Y. Wu, J. Wang, and J. E. Walsh, “Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion,” J. Clim. 19, 210–225 (2006).

    Article  Google Scholar 

  15. C. Deser and H. Teng, “Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007,” Geophys. Res. Lett. 35, L02504, (2007). doi: 10.1029/2007GL032023

    Google Scholar 

  16. J. Wang, J. L. Zhang, E. Watanabe, et al., “Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent?,” Geophys. Res. Lett. 36, L05706 (2009). doi: 10.1029/2008gl036706

    Google Scholar 

  17. J. E. Overland and M. Y. Wang, “Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice,” Tellus, Ser. A 62, 1–9 (2010).

    Article  Google Scholar 

  18. R. V. Bekryaev, I. V. Polyakov, and V. A. Alexeev, “Role of polar amplification in long-term surface air temperature variations and modern Arctic warming,” J. Clim. 23, 3888–3906 (2010).

    Article  Google Scholar 

  19. D. J. Cavalieri, P. Gloersen, C. L. Parkinson, et al., “Observed hemispheric asymmetry in global sea ice changes,” Science 278, 1104–1106 (1997).

    Article  Google Scholar 

  20. A. R. Mahoney, R. G. Barry, V. Smolyanitsky, et al., “Observed sea ice extent in the Russian Arctic, 1933–2006,” J. Geophys. Res.: Oceans 113, C11005 (2008). doi: 10.1029/2008jc004830

    Article  Google Scholar 

  21. J. E. Walsh, “A data set on Northern Hemisphere sea ice extent, 1953–1976,” Glaciology Data Report. 1978. GD-2. Arctic Sea Ice (World Data Center for Glaciology, Boulder, CO, 1978), Part 1, pp. 49–51.

    Google Scholar 

  22. J. E. Walsh and C. M. Johnson, “Analysis of Arctic sea ice fluctuations 1953–1977,” J. Phys. Oceanogr. 9, 580–591 (1978).

    Article  Google Scholar 

  23. J. E. Walsh and W. L. Chapman, “Twentieth-century sea ice variations from observational data,” Ann. Glaciol. 33, 444–448 (2001).

    Article  Google Scholar 

  24. N. A. Rayner, D. E. Parker, E. B. Horton, et al., “Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century,” J. Geophys. Res. 108(D14) (2003). doi: 10.1029/2002jd002670

    Google Scholar 

  25. V. Yu. Vize, “The causes of Arctic warming,” Sov. Arktika, No. 1 (1937).

    Google Scholar 

  26. V. F. Zakharov, Sea Ice in the Climate System (Gidrometeoizdat, St. Petersburg, 1996).

    Google Scholar 

  27. V. F. Zakharov, Sea Ice in the Climate System (World Meteorological Organization, 1997), World Climate Research Programme/Arctic Climate System Study WMO/TD 782.

    Google Scholar 

  28. V. F. Zakharov, “Intrasecular changes in the transport of Arctic sea ice in the 20th century,” in The Formation and Dynamics of the Current Arctic Climate, Ed. by G. V. Alekseev (Gidrometeoizdat, St. Petersburg, 2004), pp. 112–159 [in Russian].

    Google Scholar 

  29. I. E. Frolov, Z. M. Gudkovich, V. P. Karklin, et al., “Climate changes in ice conditions in the Arctic seas of the Eurasian shelf,” Probl. Arkt. Antarkt., No. 75, 149–160 (2007).

    Google Scholar 

  30. O. M. Johannessen, L. Bengtsson, M. W. Miles, et al., “Arctic climate change: Observed and modelled temperature and sea ice variability,” Tellus, Series A 56, 328–341 (2004).

    Article  Google Scholar 

  31. I. V. Polyakov, G. V. Alekseev, R. V. Bekryaev, et al., “Long-term ice variability in Arctic marginal seas,” J. Clim. 16, 2078–2085 (2003).

    Article  Google Scholar 

  32. P. Lemke, J. Ren, R. B. Alley, et al., “Observations: Changes in snow, ice and frozen ground,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Mar- quis, K. Averyt, M. Tignor and H. Miller (Cambridge University Press, Cambridge, New York, 2007).

    Google Scholar 

  33. T. Vinje, “Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic seas during the period 1864–1998,” J. Clim. 14, 255–267 (2001).

    Article  Google Scholar 

  34. P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850,” J. Geophys. Res. 111(D12) (2006). doi: 10.1029/2005jd006548

    Google Scholar 

  35. A. N. Grant, S. Bronnimann, T. Ewen, et al., “The early twentieth century warm period in the European Arctic,” Meteorol. Z. 18, 425–432 (2009).

    Article  Google Scholar 

  36. E. Roeckner, G. Bäuml, L. Bonaventura, et al., “The atmospheric general circulation model ECHAM5. Part I: Model description,” Max Planck Inst. Rep. (2003).

    Google Scholar 

  37. K. Arpe, L. Bengtsson, G. S. Golitsyn, I. I. Mokhov, V. A. Semenov, P. V. Sporyshev, “Analysis and modeling of the hydrological regime variations in the Caspian Sea basin,” Dokl., Earth Sci. 366(4), 552–556 (1999).

    Google Scholar 

  38. C. K. Folland, D. M. H. Sexton, D. J. Karoly, et al., “Influences of anthropogenic and oceanic forcing on recent climate change,” Geophys. Res. Lett. 25, 353–356 (1998).

    Article  Google Scholar 

  39. D. M. H. Sexton, D. P. Rowell, C. K. Folland, et al., “Detection of anthropogenic climate change using an atmospheric GCM,” Clim. Dyn. 17, 669–685 (2001).

    Article  Google Scholar 

  40. M. Hoerling, A. Kumar, J. Eischeid, et al., “What is causing the variability in global mean land temperature?,” Geophys. Res. Lett. 35, L23712 (2008). doi: 10.1029/2008gl035984

    Article  Google Scholar 

  41. G. P. Compo and P. D. Sardeshmukh, “Oceanic influences on recent continental warming,” Clim. Dyn. 32, 333–342 (2009).

    Article  Google Scholar 

  42. D. Dommenget, “The ocean’s role in continental climate variability and change,” J. Clim. 22, 4939–4952 (2009).

    Article  Google Scholar 

  43. H. van Loon and J. Rogers, “The seesaw in winter temperature between Greenland and Northern Europe, Part I: General description,” Mon. Weather Rev. 106, 296–310 (1978).

    Article  Google Scholar 

  44. R. E. Moritz, C. M. Bitz, and E. J. Steig, “Dynamics of recent climate change in the Arctic,” Science 297, 1497–1502 (2002).

    Article  Google Scholar 

  45. M. J. Rodwell, D. P. Rowell, and C. K. Folland, “Oceanic forcing of the wintertime North Atlantic Oscillation and European climate,” Nature 398, 320–323 (1999).

    Article  Google Scholar 

  46. A. Czaja and C. Frankignoul, “Influence of the North Atlantic SST on the atmospheric circulation,” Geophys. Res. Lett. 26, 2969–2972 (1999).

    Article  Google Scholar 

  47. V. M. Mehta, M. J. Suarez, J. V. Manganello, et al., “Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations: 1959–1993,” Geophys. Res. Lett. 27, 121–124 (2000).

    Article  Google Scholar 

  48. M. Latif, K. Arpe, and E. Roeckner, “Oceanic control of decadal North Atlantic sea level pressure variability in winter,” Geophys. Res. Lett. 27, 727–730 (2000).

    Article  Google Scholar 

  49. M. P. Hoerling, J. W. Hurrell, and T. Y. Xu, “Tropical origins for recent North Atlantic climate change,” Science 292, 90–92 (2001).

    Article  Google Scholar 

  50. J. Bader and M. Latif, “The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation,” Geophys. Res. Lett. 30, L2169 (2003). doi: 10.1029/2003gl018426

    Article  Google Scholar 

  51. M. P. Hoerling, J. W. Hurrell, T. Xu, et al., “Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming,” Clim. Dyn. 23, 391–405 (2004).

    Article  Google Scholar 

  52. D. T. Shindell, R. L. Miller, G. A. Schmidt, et al., “Simulation of recent northern winter climate trends by greenhouse-gas forcing,” Nature 399, 452–455 (1999).

    Article  Google Scholar 

  53. C. S. Bretherton and D. S. Battisti, “An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution,” Geophys. Res. Lett. 27, 767–770 (2000).

    Article  Google Scholar 

  54. E. K. Schneider, L. Bengtsson, and Z.-Z. Hu, “Forcing of Northern Hemisphere climate trends,” J. Atmos. Sci. 60, 1504–1521 (2003).

    Article  Google Scholar 

  55. V. A. Semenov, M. Latif, J. H. Jungclaus, et al., “Is the observed NAO variability during the instrumental record unusual?,” Geophys. Res. Lett. 35(11), L11701 (2008). doi: 10.1029/2008gl033273

    Article  Google Scholar 

  56. R. J. Allan and T. J. Ansell, “A new globally complete monthly historical mean sea level pressure data set (HadSLP2), 1850–2004,” J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  57. O. M. Johannessen, “Decreasing Arctic Sea ice mirrors increasing CO2 on decadal time scale,” Atmos. Ocean. Sci. Lett. 1, 51–56 (2009).

    Google Scholar 

  58. V. Petoukhov and V. A. Semenov, “A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents,” J. Geophys. Res. 115 (2010). doi: 10.1029/2009jd013568

  59. V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv., Atmos. Ocean. Phys. 48(4), 355–372 (2012).

    Article  Google Scholar 

  60. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, et al., “Trends in climate changes at high latitudes of the Northern Hemisphere: Diagnostics and simulation,” Led i Sneg 2(122), 53–62 (2013).

    Google Scholar 

  61. V. A. Semenov, M. Latif, D. Dommenget, et al., “The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature,” J. Clim. 23, 5668–5677 (2010).

    Article  Google Scholar 

  62. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, et al., “Connection between Eurasian and North Atlantic climate anomalies and natural variations in the Atlantic thermohaline circulation based on long-term model calculations,” Dokl. Earth Sci. 419(3), 502–505 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Semenov.

Additional information

Original Russian Text © V.A. Semenov, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 4, pp. 390–398.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A. Role of sea ice in formation of wintertime arctic temperature anomalies. Izv. Atmos. Ocean. Phys. 50, 343–349 (2014). https://doi.org/10.1134/S0001433814040215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814040215

Keywords

Navigation