Skip to main content
Log in

Structure of temperature variability in the high latitudes of the Northern Hemisphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The spatial structure of surface air temperature (SAT) anomalies in the extratropical latitudes of the Northern Hemisphere (NH) during the 20th century is studied from the data obtained over the period 1892–1999. The expansion of the mean (over the winter and summer periods) SAT anomalies into empirical orthogonal functions (EOFs) is used for analysis. It is shown that variations in the mean air temperature in the Arctic region (within the latitudes 60°–90°N) during both the winter and summer periods can be described with a high accuracy by two spatial orthogonal modes of variability. For the winter period, these are the EOF related to the leading mode of variability of large-scale atmospheric circulation in the NH, the North Atlantic Oscillation, and the spatially localized (in the Arctic) EOF, which describes the Arctic warming of the mid-20th century. The expansion coefficient of this EOF does not correlate with the indices of atmospheric circulation and is hypothetically related to variations in the area of the Arctic ice cover that are due to long-period variations in the influx of oceanic heat from the Atlantic. On the whole, a significantly weaker relation to the atmospheric circulation is characteristic of the summer period. The first leading variability mode describes a positive temperature trend of the past decades, which is hypothetically related to global warming, while the second leading EOF describes a long-period oscillation. On the whole, the results of analysis suggest a significant effect of natural climatic variability on air-temperature anomalies in the NH high latitudes and possible difficulties in isolating an anthropogenic component of climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hansen, R. Rueay, J. Glascoe, and M. Sato, “GISS Analysis of Surface Temperature Change,” J. Geophys. Res. D 104, 30997–31022 (1999).

    Article  Google Scholar 

  2. P. D. Jones, M. New, and D. E. J. Parker, “Surface Air Temperature and Its Changes over the Past 150 Years,” Rev. Geophys. 37, 173–199 (1999).

    Article  Google Scholar 

  3. O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite Evidence for an Arctic Sea Ice Cover in Transformation,” Science 286, 1937–4939 (1999).

    Article  Google Scholar 

  4. O. M. Johannessen, L. Bengtsson, and M. W. Miles, “Arctic Climate Change: Observed and Modeled Temperature and Sea-Ice Variability,” Tellus A 56, 328–341 (2004).

    Article  Google Scholar 

  5. J. E. Walsh, W. L. Chapman, and T. L. Shy, “Recent Decrease of Sea Level Pressure in the Central Arctic,” J. Clim. 9, 480–486 (1996).

    Article  Google Scholar 

  6. J. Räisänen, “CO2 Induced Changes in Interannual Temperature and Precipitation Variability in 19 CMIP2 Experiments,” J. Clim. 15, 2395–2411 (2002).

    Article  Google Scholar 

  7. M. M. Holland and C.M. Bitz, “Polar Amplification of Climate Change in Coupled Models,” Clim. Dyn. 21, 221–223 (2003).

    Article  Google Scholar 

  8. M. C. Serreze and J. A. Francis, “The Arctic Amplification Debate,” Clim Change 76, 241–264 (2006).

    Article  Google Scholar 

  9. I. V. Polyakov, G. V. Alekseev, and R. V. Bekryaev, “Observationally Based Assessment of Polar Amplification of Global Warming,” Geophys. Rev. Lett. 29(18), doi: 10.1029/2001GL011111 (2002).

  10. J. W. Hurrell, “Decadal Trends in the North Atlantic Oscillation, Regional Temperature and Precipitation,” Science 269, 676–679 (1995).

    Article  Google Scholar 

  11. J. W. Hurrell, “Influence of Variations in Extratropical Wintertime Teleconnections on Northern Hemisphere Temperature,” Geophys. Rev. Lett. 23, 665–668 (1996).

    Article  Google Scholar 

  12. J. M. Wallace, Y. Zhang, and L. Bajuk, “Interpretation of Interdecadal Trends in Northern Hemisphere Surface Air Temperature,” J. Clim. 9, 249–259 (1996).

    Article  Google Scholar 

  13. R. E. Moritz, C. M. Bitz, and E. J. Steig, “Dynamics of Recent Climate Change in the Arctic,” Science 297, 1497–1502 (2002).

    Article  Google Scholar 

  14. T. L. Delworth and T. R. Knutson, “Simulation of Early 20th Century Global Warming,” Science 287, 2246–2250 (2000).

    Article  Google Scholar 

  15. L. Bengtsson, V. A. Semenov, and O. Johannessen, “The Early Twentieth-Century Warming in the Arctic—A Possible Mechanism,” J. Clim. 17, 4045–4057 (2004).

    Article  Google Scholar 

  16. T. L. Delworth and M. E. Mann, “Observed and Simulated Multidecadal Variability in the Northern Hemisphere,” Clim. Dyn. 16, 661–676 (2000).

    Article  Google Scholar 

  17. I. V. Polyakov and M. A. Johnson, “Arctic Decadal and Interdecadal Variability,” Geophys. Rev. Lett. 27, 4097–4100 (2000).

    Article  Google Scholar 

  18. R. Przybylak, “Temporal and Spatial Variations of Surface Air Temperature over the Period of Instrumental Observations in the Arctic,” Int. J. Climatol. 20, 587–614 (2000).

    Article  Google Scholar 

  19. J. D. Kahl, D. J. Charlevoix, N. A. Zaitseva, et al., “Evidence for Greenhouse Warming over the Arctic Ocean in the Past 40 Years,” Nature 361(6410), 335–337 (1993).

    Article  Google Scholar 

  20. S. Martin, E. A. Munoz, and R. Drucker, “Recent Observations of a Spring-Summer Surface Warming over the Arctic Ocean,” Geophys. Rev. Lett. 24, 1259–1262 (1997).

    Article  Google Scholar 

  21. I. G. Rigor, R. L. Colony, and S. Martin, “Variations in Surface Air Temperature Observations in the Arctic, 1979–97,” J. Clim., No. 5, 896–914 (2000).

  22. M. C. Serreze, J. E. Walsh, F. S. Chapin III, et al., “Observational Evidence of Recent Change in the Northern High-Latitude Environment,” Clim. Change 46, 159–207 (2000).

    Article  Google Scholar 

  23. G. V. Alekseev, Ye. I. Alexandrov, and R. V. Bekriayev, “Detection and Modelling of Greenhouse Warming in the Arctic and Sub-Arctic, INTAS 97-1277,” Technical Report on Task 1: Surface Air Temperature from Meteorological Data, Arctic and Antarctic Research Institute (Arctic and Antarctic Research Inst., St. Petersburg, 1999).

    Google Scholar 

  24. G. V. Alekseev and P. N. Svyashchennikov, Natural Variability of Climatic Characteristics of the Northern Polar Region and Northern Hemisphere (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  25. J. M. Craddock and C. R. Flood, “Eigenvectors for Representing 500 mb Geopotential Surface over the Northern Hemisphere,” Q. J. R. Meteorol. Soc. 95, 576–593 (1969).

    Article  Google Scholar 

  26. P. M. Kelly, P. D. Jones, and C. B. Sear, “Variations in Surface Air Temperatures: Part 2. Arctic Regions, 1881–1980,” Mon. Weather Rev. 110, 71–83 (1982).

    Article  Google Scholar 

  27. J. E. Overland, M. C. Spillane, D. Percival, et al., “Seasonal and Regional Variation of Pan-Arctic Surface Air Temperature over the Instrumental Record,” J. Clim. 17, 3263–3282 (2004).

    Article  Google Scholar 

  28. A. G. Barnston and R. E. Livezey, “Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns,” Mon. Weather Rev. 115, 1083–1126 (1987).

    Article  Google Scholar 

  29. K. E. Trenberth and D. A. Paolino, “The Northern Hemisphere Sea-Level Pressure Data Set-Trends, Errors and Discontinuities,” Mon. Weather Rev. 108, 855–872 (1980).

    Article  Google Scholar 

  30. C. F. Ropelewski and P. D. Jones, “An Extension of the Tahiti-Darwin Southern Oscillation Index,” Mon. Weather Rev. 115, 2161–2165 (1987).

    Article  Google Scholar 

  31. D. W. J. Thompson and J. M. Wallace, “Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability,” J. Clim. 13, 1000–1016 (2000).

    Article  Google Scholar 

  32. S. A. Venegas and L. A. Mysak, “Is There a Dominant Timescale of Natural Variability in the Arctic?” J. Clim. 13, 3412–3434 (2000).

    Article  Google Scholar 

  33. C. Deser, J. E. Walsh, and M. S. Timlin, “Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends,” J. Clim. 13, 617–633 (2000).

    Article  Google Scholar 

  34. J. E. Walsh and C. M. Johnson, “Analysis of Arctic Sea Ice Fluctuations, 1953–77,” J. Phys. Oceanogr. 9, 580–591 (1979).

    Article  Google Scholar 

  35. V. F. Zakharov, Sea Ices in a Climatic System (Gidrometeoizdat, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  36. I. V. Polyakov, G. V. Alekseev, R. V. Bekryaev, et al., “Long-Term Ice Variability in Arctic Marginal Seas,” J. Clim. 16, 2078–2085 (2003).

    Article  Google Scholar 

  37. Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  38. N. P. Gillett, M. R. Allen, and K. D. Williams, “The Role of Stratospheric Resolution in Simulating the Arctic Oscillation Response to Greenhouse Gases,” Geophys. Rev. Lett. 29(10), doi:10.1029/2001GL014444 (2002).

  39. M. P. Hoerling, J. W. Hurrell, and T. Y. Xu, “Tropical Origins for Recent North Atlantic Climate Change,” Science 292, 90–92 (2001).

    Article  Google Scholar 

  40. M. Latif, E. Roeckner, M. Botzet, et al., “Reconstructing, Monitoring, and Predicting Multidecadal-Scale Changes in the North Atlantic Thermohaline Circulation with Sea Surface Temperature,” J. Clim. 17, 1605–1614 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Semenov.

Additional information

Original Russian Text © V.A. Semenov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 6, pp. 744–753.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, V.A. Structure of temperature variability in the high latitudes of the Northern Hemisphere. Izv. Atmos. Ocean. Phys. 43, 687–695 (2007). https://doi.org/10.1134/S0001433807060023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807060023

Keywords

Navigation