Skip to main content
Log in

Forty years of JEBAR—the finding of the joint effect of baroclinicity and bottom relief for the modeling of ocean climatic characteristics

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The paper gives a brief historical outline of JEBAR and its role in the ocean modeling, the cases of plagiarism by W. Holland and other scholars, and the main scientific results obtained with the help of JEBAR, JEBAR-2, and BARBE (baroclinic β-effect). The paper consists of the following main sections: the use of JEBAR as a correction of an error made by the authors of the method of mass flux; G. Neumann, P. Welander, bottom pressure torque, and JEBAR; opposition in the Institute of Oceanology of the Russian Academy of Sciences; W. Holland and his disciples as would-be hijackers of JEBAR; wide recognition and mass plagiarism of JEBAR in the English-language literature; JEBAR-2; the main results of the use of water baroclinicity, BARBE, JEBARs, and other factors of ocean modeling; adaptation of thermohydrodynamic parameters and diagnosis of long-term variations in the oceanic climate; and JEBAR and modern prognostic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Shtokman, “Equation of Integral Mass Fluxes Excited by the Wind in the Inhomogeneous Sea,” Dokl. Akad. Nauk SSSR 54, 407–410 (1946).

    Google Scholar 

  2. H. U. Sverdrup, “Wind-Driven Currents in a Baroclinic Ocean with Application to the Equatorial Currents of the Eastern Pacific,” Proc. Natl. Acad. Sci. U.S.A. 33, 318–326 (1947).

    Article  Google Scholar 

  3. W. H. Munk, “On the Wind-Driven Ocean Circulation,” J. Meteorol. 7(2), 79–93 (1950).

    Google Scholar 

  4. V. W. Ekman, “On the Influence of the Earth Rotation on Ocean Currents,” Arkiv Mat., Astron., Fysik 2(11), 1–52 (1905).

    Google Scholar 

  5. V. W. Ekman, “Ber Horizontalzirkulation Bei Winderzeugten Meeresstrmungen,” Arkiv Mat., Astron. Fysik 17 (1923).

  6. V. B. Shtokman, “Use of an Analogy between the Integral Mass Flux in the Sea and the Bending of a Fixed Plate to Characterize Flows in Some Specific Cases,” Dokl. Akad. Nauk SSSR, Novaya Ser. 54, 689–692 (1946).

    Google Scholar 

  7. Lord Rayleigh, “On the Flow of Viscous Liquids, Especially in Two Dimensions,” Philos. Mag. J. Sci. XXXVIII, 354–372 (1893).

    Google Scholar 

  8. H. Stommel, “The Westward Intensification of the Wind-Driven Ocean Currents,” Trans. Am. Geophys. Union 29, 202–206 (1948).

    Google Scholar 

  9. A. S. Sarkisyan, “On the Problem of Determining Steady Wind Currents in the Baroclinic Ocean Layer,” Tr. Geofiz. Inst. Akad. Nauk SSSR 164(37), 50–61 (1956).

    Google Scholar 

  10. P. S. Lineikin, “Dynamics of Steady-State Currents in an Inhomogeneous Sea,” Dokl. Akad. Nauk SSSR 105, 1215–1217 (1955).

    Google Scholar 

  11. A. S. Sarkisyan, “On the Role of Pure Drift Advection of Density in the Dynamics of Wind Currents of a Baroclinic Ocean,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 9, 1396–1407 (1961).

    Google Scholar 

  12. A. S. Sarkisyan, “Dynamics of the Onset of Wind Currents in a Baroclinic Ocean,” Okeanologiya 2, 393–409 (1962).

    Google Scholar 

  13. A. S. Sarkisyan, Principles of Theory and Computation of Ocean Currents (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  14. A. S. Sarkisyan, Theory and Computation of Ocean Currents (Gidrometeoizdat, Moscow, 1966; IPST, Jerusalem, 1969).

    Google Scholar 

  15. A. G. Kolesnikov, et al., Discovery, Experimental Study, and Development of the Theory of the Lomonosov Current (MGI AN USSR, Sevastopol, 1968) [in Russian].

    Google Scholar 

  16. A. S. Sarkisyan, “Deficiencies of Barotropic Models of Ocean Currents,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 5, 818–836 (1969).

    Google Scholar 

  17. A. S. Sarkisyan, “Limitations Models for Calculation of Currents in the Ocean Basin Including the Equator,” Morsk. Geofiz. Issled., No. 2148, 64–75 (1970).

  18. A. S. Sarkisyan and V. V. Knysh, “Experience in Computation of the Level Surface and Velocity of Currents in the Caribbean Sea,” Meteorol. Gidrol., No. 3, 87–93 (1969).

  19. A. S. Sarkisyan and A. A. Serebryakov, “Nonstationary Model for Equatorial Currents 46(1), 87–91 (1969).

    Google Scholar 

  20. A. S. Sarkisyan and A. A. Serebryakov, “Examples of Computation of Equatorial Currents,” Morsk. Geofiz. Issled. 47(1), 60–69 (1970).

    Google Scholar 

  21. A. S. Sarkisyan, Baroclinicity of the Fluid and the Bottom Relief As the Main Factors in the Theory of Integral Mass Fluxes (MGI AN USSR, Sevastopol, 1969) [in Russian].

    Google Scholar 

  22. A. S. Sarkisyan and A. F. Pastukhov, “Density Field As the Main Indicator of Steady Sea Currents,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 6, 64–75 (1970).

    Google Scholar 

  23. A. S. Sarkisyan and V. F. Ivanov, “Joint Effect of Baroclinicity and Bottom Relief As an Important Factor in the Dynamics of Sea Currents,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 7, 173–188 (1971).

    Google Scholar 

  24. V. V. Knysh and A. S. Sarkisyan, “Numerical Methods of Study of Dynamic Processes in the Ocean,” Morsk. Geofiz. Issled. 52, No. 2, 145–172 (1971).

    Google Scholar 

  25. V. V. Knysh, A. F. Pastukhov, and A. S. Sarkisyan, Study of the Effect of Density and Wind Fields on Steady Sea Currents (MGI AN USSR, Sevastopol, 1971) [in Russian].

    Google Scholar 

  26. A. S. Sarkisyan, Numerical Methods of Studies of Ocean Circulation, Itogi Nauki i Tekhniki, Ser. Okeanologiya (Moscow, 1973) [in Russian].

  27. A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  28. A. S. Sarkisyan, The Diagnostic Calculation of a Large Scale Oceanic Circulation. The Sea, Marine Modelling (New York, 1977), Vol. 6, pp. 363–458.

    Google Scholar 

  29. A. S. Sarkisyan, V. P. Kochergin, and V. I. Klimok, “Theoretical Model and Calculations of the Density Field for an Ocean with an Arbitrary Bottom Relief,” Izv. Akad. Nauk SSSR., Fiz. Atmos. Okeana 8, 740–751 (1972).

    Google Scholar 

  30. A. S. Sarkisyan, “Analisys of Model Calibration Results: Atlantic Ocean Climatic Calculation,” J. Marine Syst., No. 6, 47–66 (1995).

    Google Scholar 

  31. A. S. Sarkisyan, “On a Mechanism of the World Ocean General Circulation,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 10, 1293–1308 (1974).

    Google Scholar 

  32. V. P. Kochergin, A. S. Sarkisyan, and V. I. Klimok, “Numerical Experiments on Computation of the North Atlantic,” Meteorol. Gidrol., No. 8, 54–61 (1972).

    Google Scholar 

  33. G. I. Marchuk, A. S. Sarkisyan, and V. P. Kochergin, “Calculations of Flows in a Baroclinic Ocean: Numerical Methods and Results,” Geophys. Fluid Dyn. 5, 89–100 (1973).

    Google Scholar 

  34. G. I. Marchuk and A. S. Sarkisyan, Mathematical Modelling of Ocean Circulation (Springer, Berlin, 1988).

    Google Scholar 

  35. G. Neumann, “On the Mass Transport of Wind-Driven Currents in a Baroclinic Ocean with Application to the North Atlantic,” Z. Meteorol., No. 12, 138–147 (1958).

    Google Scholar 

  36. P. Welander, “On the Vertically Integrated Mass Transport in the Oceans,” in The Atmosphere and the Sea in Motion, Ed. by B. Bolin (New York, 1959), pp. 95–101.

  37. A. S. Sarkisyan and A. I. Perederei, “Dynamic Method as a First Approximation in Calculation of the Sea-Surface Height of a Baroclinic Ocean,” Meteorol. Gidrol., No. 4, 45–54 (1972).

  38. A. I. Perederei and A. S. Sarkisyan, “Exact Solutions to Some Transformed Equations of Dynamics of Sea Currents,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8, 1073–1079 (1972).

    Google Scholar 

  39. Collected Works of Henry M. Stommel (American Meteorological Society, Boston, 1995), Vol. 1, p. 98.

  40. “Discussion on the Theory of Sea Currents,” Okeanologiya 11, 334–338 (1971).

  41. G. L. Mellor, “Comments on ‘On the Utility and Disutility of JEBAR’,” J. Phys. Oceanogr. 29, 2117–2118 (1999).

    Article  Google Scholar 

  42. W. R. Holland and A. D. Hirschman, “A Numerical Calculations of the Circulation in the North Atlantic Ocean,” J. Phys. Occanogr. 22, 336–354 (1972).

    Article  Google Scholar 

  43. W. R. Holland, “Baroclinic and Topographic Influences on the Transport in Western Boundary Currents,” Geophys. Fluid Dyn., No. 4, 187–210 (1973).

  44. T. Sakomoto and T. Yamagata, “Evolution of the Baroclinic Planetary Eddies over Localized Bottom Topography in Terms of JEBAR,” J. Geophys. Astrophys. Fluid Dyn. Phys. Oceanogr. 1, 1–27 (1996).

    Google Scholar 

  45. W. R. Holland, “Oceanic General Circulation Models,” in The Sea, Marine Modelling, Ed. by E. D. Goldberg, I. N. McCane, J.J. O’Brien, and J. H. Steele (Wiley, New York, 1977), Vol. 6, pp. 3–45.

    Google Scholar 

  46. A. S. Sarkisyan and V. F. Ivanov, “Comparison of Different Methods of Calculating the Currents of a Baroclinic Ocean,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8, 403–418 (1972).

    Google Scholar 

  47. A. S. Sarkisyan and V. P. Keondzhyan, “Calculation of the Sea-Surface Height and of the Function of Integral Mass Fluxes for the North Atlantic,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8, 1202–1215 (1972).

    Google Scholar 

  48. C. W. Bönig and P. Herrmann, “The Annual Cycle of Poleward Heat Transport in the Ocean: Results from High Resolution Modelling of the North and Equatorial Atlantic,” J. Phys. Oceanogr. 24, 91–107 (1994).

    Article  Google Scholar 

  49. F. O. Bryan, C. W. Bning, and W. R. Holland, “On the Midlatitude Circulation in a High-Resolution Model of the North Atlantic,” J. Phys. Oceanogr. 25, 289–305 (1995).

    Article  Google Scholar 

  50. R. C. Dösher, W. Bning, and P. Herrmann, “Response of Circulation and Heat Transport in the North Atlantic to Changes in Thermohaline Forcing in Northern Latitudes: A Model Study,” J. Phys. Oceanogr. 24, 2306–2318 (1994).

    Article  Google Scholar 

  51. P. T. Shaw, G. T. Csanady, “Self-Advection of Density Perturbation on a Sloping Continental Shelf,” J. Phys. Oceanogr. 13, 769–782 (1983).

    Article  Google Scholar 

  52. A. E. Gill and K. Bryan, “Effects of Geometry on the Circulation of a Three Dimensional Southern-Hemisphere Ocean Model,” Deep-Sea Res. 18, 685–721 (1971).

    Google Scholar 

  53. C. W. Newton, “Mountain Torques in the Global Angular Momentum Balance,” J. Atmos. Sci. 28, 623–628 (1971).

    Article  Google Scholar 

  54. W. Cai and R. O. Greatbatch, “Compensation for the NADW Outflow in Global Ocean General Circulation Model,” J. Phys. Oceanogr. 25, 226–241 (1995).

    Article  Google Scholar 

  55. T. J. Simons, “On the Joint Effect of Baroclinicity and Topography,” J. Phys. Oceanogr. 9, 1283–1287 (1979).

    Article  Google Scholar 

  56. R.-H. Zhang and M. Engoh, “A Free Surface General Circulation Model for the Tropical Pacific Ocean,” J. Geophys. Res. C 97, 11 237–11 255 (1992).

    Google Scholar 

  57. C. C. L. Tong, et al., “Modelling the Mean Circulation of the Labrador Sea and the Adjacent Shelves,” J. Phys. Oceanogr. 26, 1989–2010 (1996).

    Article  Google Scholar 

  58. Lixing. Wu and Liu. Zhengyu, The Effect of Continental Slope on Buoyancy-Driven Circulation. J. Phys. Oceanogr. 29, 1881–1891 (1999).

    Article  Google Scholar 

  59. J. M. Huthnance, “Slope Currents and ‘JEBAR’,” J. Phys. Oceanogr. 14, 795–810 (1984).

    Article  Google Scholar 

  60. G. Mertz and D. G. Wright, “Interpretations of the JEBAR Term,” J. Phys. Oceanogr. 22, 301–305 (1992).

    Article  Google Scholar 

  61. H. Friedrich and U. Sündermann, “On the Problem of the Joint Effect of Baroclinicity and Bottom Relief (JEBAR),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34, 733–736 (1998) [Izv., Atmos. Ocean. Phys. 34, 661–664 (1998)].

    Google Scholar 

  62. G. Mellor, Introduction to Physical Oceanography (AIP, Woodbury, New York, 1996).

    Google Scholar 

  63. D. B. Haidvogel and A. Beckmann, Numerical Ocean Circulation Modeling (Imperial College Press, London, 1999).

    Google Scholar 

  64. P. G. Myers, A. F. Fanning, and A. J. Weaver, “JEBAR, Bottom Pressure Torque, and Gulf Stream Separation,” J. Phys. Oceanogr. 26, 671–683 (1996).

    Article  Google Scholar 

  65. Xueen Chen, “Analysis of the Circulation on the East-Chinese Shelf and the Adjacent Pacific Ocean,” PhD Thesis (2004).

  66. T. Pohlmann, “Discussion of the JEBAR Term—Derivation, Interpretation and Application to the Northeastern Atlantic Shelf,” Report of European Communities (1999).

  67. R. Salmon and R. Ford, “A Simple Model of the Joint Effect of Baroclinicity and Relief on Ocean Circulation,” J. Mar. Res. 53, 211–230 (1995).

    Article  Google Scholar 

  68. L. H. Slordal and J. E. Weber, “Adjustment to JEBAR Forcing in a Rotating Ocean,” J. Phys. Oceanogr. 26, 657–670.

  69. G. T. Csandy, “’Pycnobathic’ Currents over the Upper Continental Slope,” J. Phys. Occanogr. 15, 306–315 (1985).

    Article  Google Scholar 

  70. W. Hansen, “Wind und Massenverteilung als Ursache der Meeresstrmungen,” in The Atmosphere and the Sea in Motion, Ed. by B. Bolin (Oxford University Press, Oxford, 1959), pp. 102–106.

    Google Scholar 

  71. J. R. Lazier and D. G. Wright, “Annual Velocity Variations in the Labrador Current,” J. Phys. Oceanogr. 23, 659–678 (1993).

    Article  Google Scholar 

  72. T. Kono, et al., “Coastal Oyashio South of Hokkaido, Japan,” J. Phys. Oceanogr. 34, 1477–1494 (2004).

    Article  Google Scholar 

  73. A. S. Sarkisyan, “Advecion of Density and Intensification of Wind Currents toward the Western Coast of the Ocean,” Dokl. Akad. Nauk SSSR 134, 1339–1342 (1961).

    Google Scholar 

  74. K. Bryan, “A Numerical Method for the Study of the Circulation of the World Ocean,” J. Comput. Phys. 4, 347–376 (1969).

    Article  Google Scholar 

  75. J. A. Semtner and R. M. Chervin, “Ocean General Circulation from a Global Eddy-Resolving Model,” J. Geophys. Res. C 97, 5493–5550 (1992).

    Google Scholar 

  76. J. L. Sarmiento and K. Bryan, “An Ocean Transport Model for the North Atlantic,” J. Geophys. Res. C 87, 394–408 (1982).

    Google Scholar 

  77. A. S. Sarkisyan and Yu. L. Demin, “A Semidiagnostic Method of Sea Currents Calculation,” in Large-Scale Oceanographic Experiments in the WCRP, (WCRP Publ. Series, Tokyo, 1983), Vol. 2, pp. 201–214.

    Google Scholar 

  78. A. S. Sarkisyan and U. Sundermann, “On One Direction Initiated by G. I. Marchuk in Mathematical Modeling of the Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 31, 427–454 (1995).

    Google Scholar 

  79. T. Ezer and G. L. Mellor, “Diagnostic and Prognostic Calculations of the North Atlantic and Sea Level Using a Sigma Coordinate Ocean Model,” J. Geophys. Res., 99, 14 159–14 171 (1994).

    Article  Google Scholar 

  80. Yu. L. Demin and R. A. Ibraev, “On a Boundary Problem for the Level of a Basin in Models of Sea Currents,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 21, 757–764 (1986).

    Google Scholar 

  81. A. S. Sarkisyan, “On Some Milestones in Ocean Modeling History,” Russ. J. Numer. Anal. Math. Model. 16, 497–518 (2001).

    Google Scholar 

  82. T. Ezer, “Decadal Variabilities of the Upper Layers of the Subtropical North Atlantic: An Ocean Model Study,” J. Phys. Oceanogr. 29, 3111–3124 (1999).

    Article  Google Scholar 

  83. V. V. Knysh, S. G. Demyshev, G. K. Korotayev, and A. S. Sarkisyan, “Four-Dimensional Climate of Seasonal Black Sea Circulation,” Russ. J. Numer. Anal. Math. Model. 16(5), 409–426 (2001).

    Google Scholar 

  84. G. L. Mellor and T. A. Ezer, “Gulf Stream Model and an Altimetry Assimilation Scheme,” J. Geophys. Res. 96, 8779–8795 (1996).

    Google Scholar 

  85. S. Levitus, “Interpentadal Variability of Steric Sea Level and Geopotential Thickness of the North Atlantic Ocean, 1970–1974 versus 1955–1959,” J. Geophys. Res. 94, 16 125–16 131 (1989).

    Google Scholar 

  86. R. J. Greatbatch, A. F. Fanning, A. D. Goulding, and S. Levitus, “A Diagnosis of Interpentadal Circulation Changes in the North Atlantic,” J. Geophys. Res. C 96, 22 009–22 023 (1991).

    Google Scholar 

  87. T. Ezer, G. L. Mellor, and R. J. Graetbatch, “On the Interpentadal Variability of the North Atlantic Ocean: Model Simulated Changes in Transport, Meridional Heat Flux and Coastal Sea Level between 1955–1959 and 1970–1974,” J. Geophys. Res. 100, 10 559–10 566 (1995).

    Article  Google Scholar 

  88. H. J. Friedrich, “Preliminary Results from a Numerical Multilayer Model Far the Circulation in the North Atlantic,” Dtsch. Hydrogr. Zeitschr. 23(4), 145–164 (1970).

    Article  Google Scholar 

  89. A. Leetmaa, P. Niller, and H. Stommel, “Does the Sverdrup Relations Account for the Mid-Atlantic Circulation?,” J. Mar. Res. 35, 1–10 (1977).

    Google Scholar 

  90. C. Wunsch and D. Roemich, “Is the North Atlantic in Sverdrup Balance?,” J. Phys. Oceanogr., No. 12, 1876–1880 (1985).

    Google Scholar 

  91. K. L. Oshima, et al., “Sverdrup Balance and the Cyclonic Gyre in the Sea of Okhotsk,” J. Phys. Oceanogr. 24, 513–525 (2004).

    Article  Google Scholar 

  92. R. Bleck, S. Dean, M. O’Keefe, and A. Sawday, “A Comparison of Data-Parallel and Message-Passing Versions of the Miami Isopycnic Coordinate Ocean Model (MICOM),” Parallel Comput., No. 21, 1695–1720 (1995).

  93. A. M. Paiva, J. T. Hargrove, E. P. Chassignet, and R. Bleck, “Turbulent Behavior of a Fine Mesh (1/12 Degree) Numerical Simulation of the North Atlantic,” J. Mar. Sys., No. 21, 307–320 (1999).

    Google Scholar 

  94. R. D. Smith, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, “Numerical Simulations of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr., No. 30, 1532–1561 (2000).

    Google Scholar 

  95. N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma Model of Global Ocean Circulation and Its Sensitivity to Variations in Wind Stress,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 38, 537–556 (2002) [Izv., Atmos. Ocean. Phys. 38, 477–494 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Sarkisyan, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 5, pp. 582–603.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkisyan, A.S. Forty years of JEBAR—the finding of the joint effect of baroclinicity and bottom relief for the modeling of ocean climatic characteristics. Izv. Atmos. Ocean. Phys. 42, 534–554 (2006). https://doi.org/10.1134/S0001433806050021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806050021

Keywords

Navigation