Skip to main content

Advertisement

Log in

The origin of stable halogenated compounds in volcanic gases

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background

Halogenated compounds in the atmosphere are of great environmental concern due to their demonstrated negative effect on atmospheric chemistry and climate. Detailed knowledge of the emission budgets of halogenated compounds has to be gained to understand better their specific impact on ozone chemistry and the climate. Such data are also highly relevant to guide policy decisions in connexion with international agreements about protection of the ozone layer. In selected cases, the relevance of specific emission sources for certain compounds were unclear. In this study we present new and comprehensive evidence regarding the existence and relevance of a volcanic contribution of chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), halons (bromine containing halo(hydro)carbons), and fully fluorinated compounds (e.g. CF4 and SF6) to the atmospheric budget.

Methods

In order to obtain new evidence of a volcanic origin of these compounds, we collected repeatedly, during four field campaigns covering a period of two years, gases from fumaroles discharging over a wide range of temperatures at the Nicaraguan subduction zone volcanoes Momotombo, Cerro Negro and Mombacho, and analysed them with very sensitive GC/MS systems.

Results and Discussion

In most fumarolic samples certain CFCs, HFCs, HCFCs, halons, and the fully fluorinated compounds CF4 and SF6 were present above detection limits. However, these compounds occur in the fumarole gases in relative proportions characteristic for ambient air.

Conclusion

This atmospheric fingerprint can be explained by variable amounts of air entering the porous volcanic edifices and successively being incorporated into the fumarolic gas discharges.

Recommendation and Outlook

Our results suggest that the investigated volcanoes do not constitute a significant natural source for CFCs, HFCs, HCFCs, halons, CF4, SF6 and NF3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butler JH, Battle M, Bender ML, Montzka SA, Clarke AD, Saltzman ES, Sucher CM, Severinghaus JP, Elkins JW (1999): A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755

    Article  CAS  Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003): Volcanism and geochemistry in Central America: Progress and problems. In: Eiler J (ed), Inside the Subduction Factory. Geophys Monogr Ser 138, 153–174, AGU, Washington, DC

    Google Scholar 

  • CCVG (Commission on the Chemistry of Volcanic Gases) (2004): 〈 http://volcgas.unm.edu/2004newsletter.pdf

  • Ellis DA, Mabury SA, Martin JW, Muir DCG (2001): Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412, 321–324

    Article  CAS  Google Scholar 

  • Elming SA, Layer P, Ubieta K (2001): A paleomagnetic study and age determinations of Tertiary rocks in Nicaragua, Central America. Geophys J Internat 147(2) 294–309

    Article  Google Scholar 

  • Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004): Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochem Geophys Geosys 5, Q06001 〈DOI: 10.1029/2003GC000621

  • Gaffney JS (1995): Volcanic CFCs. Environ Sci Technol 29(1) A8

    Google Scholar 

  • Galle B, Hansteen TH, Frische M, Garofalo K, Strauch W (2003): An estimate of the SO2 emissions from four volcanoes in Nicaragua, made using mini-DOAS spectroscopy. IAVCEI 8th Field Workshop Volc Gases, Abstr Vol 〈 http://volcgas.unm.edu/Abstracts_Draft_11.doc

  • Giggenbach WF (1975): A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39, 132–145

    Article  Google Scholar 

  • Giggenbach WF, Tedesco D, Sulistiyo Y, Caprai A, Cioni R, Favara R, Fischer TP, Hirabayashi JI, Korzhinsky M, Martini M, Menyailov I, Shinohara H (2001): Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia. J Volcanol Geotherm Res 108(1–4) 157–172

    Article  CAS  Google Scholar 

  • Halmer M, Schmincke HU, Graf HF (2002): The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J Volcanol Geotherm Res 115, 511–528

    Article  CAS  Google Scholar 

  • Harnisch J, Eisenhauer A (1998): Natural CF4 and SF6 on Earth. Geophys Res Let 25(13) 2401–2404

    Article  CAS  Google Scholar 

  • Harnisch J, Frische M, Borchers R, Eisenhauer A, Jordan A (2000): Natural fluorinated organics in fluorite and rocks. Geophys Res Let 27, 1883–1886

    Article  CAS  Google Scholar 

  • Harnisch J, Hoehne N (2002a): Comparison of emissions estimates derived from atmospheric measurements with national estimates of HFCs, PFCs and SF6. Environm Sci Pollut Res 9(5) 315–320

    CAS  Google Scholar 

  • Harnisch J, de Jager D, Gale J, Stobbe O (2002b): Halogenated compounds and climate change: Future emission levels and reduction costs. Environ Sci Pollut Res 9(6) 369–374

    Article  CAS  Google Scholar 

  • Hill BE, La Femina PC, Connor CB, Strauch W, Davoli G, Guevera G, Saballos A (1999): August 1999 eruption of Cerro Negro volcano, Nicaragua, successfully forecast using time-volume relationship. Eos Trans AGU 80(46) F1111

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001): Climate Change 2001: The Scientific Basis. 881 pp, Cambridge University Press, UK

    Google Scholar 

  • Inn ECY, Vedder JF, Condon EP (1981): Gaseous Constituents in the Plume from Eruptions of Mount St Helens. Science 211, 821–823

    Article  CAS  Google Scholar 

  • Isidorov VA, Zenkevich IG, Ioffe BV (1990): Volatile Organic Compounds in Solfataric Gases. J Atmos Chem 10, 329–340

    Article  CAS  Google Scholar 

  • Jordan A, Harnisch J, Borchers R, Le Guern F, Shinohara H (2000): Volcanogenic Halocarbons. Environ Sci Technol 34(6) 1122–1124

    Article  CAS  Google Scholar 

  • Jordan A (2003): Volcanic Formation of Halogenated Organic Compounds. In: Gribble GW (ed), The Handbook of Environmental Chemistry. vol 3, part p, 121–139, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • McBirney AR, Williams H (1965): Volcanic history of Nicaragua. Univ Calif Pub Geo Sci 55, 1–65

    Google Scholar 

  • McCulloch A, Ashford P, Midgley PM (2001): Historic emissions of fluorotrichloromethane (CFC-11) based on a market survey. Atmos Environ 35(26) 4387–4397

    Article  CAS  Google Scholar 

  • McKnight SB, Williams SN (1997): Old cinder cone or young composite volcano?: The nature of Cerro Negro, Nicaragua. Geology 25(4) 339–342

    Article  Google Scholar 

  • Menyailov IA, Nikitina LP, Shapar VN, Pilipenko VP (1986): Temperature increase and chemical change of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: Are these indicators of a possible eruption? J Geophys Res 91(B12) 12199–12214

    Article  Google Scholar 

  • Montegrossi G, Tassi F, Vaselli O, Buccianti A, Garofalo K (2001): Sulfur species in volcanic gases. Anal Chem 73(15) 3709–3715

    Article  CAS  Google Scholar 

  • Ohsawa S, Yusa Y, Oue K, Amita K (2000): Entrainment of atmospheric air into the volcanic system during the 1995 phreatic eruption of Kuju Volcano, Japan. J Volcanol Geotherm Res 96, 33–43

    Article  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK, Dalluge RW, Penkett SA, Jones B (1982): Carbonyl sulfide and carbon disulfide from the eruptions of Mount St Helens. Science 215(4533) 665–667

    Article  CAS  Google Scholar 

  • Rasmussen RA, Penkett SA, Prosser N (1979): Measurement of carbon tetrafluoride in the atmosphere. Nature 277, 549–551

    Article  CAS  Google Scholar 

  • Reeves CE, Sturges WT, Sturrock GA, Preston K, Oram DE, Schwander J, Mulvaney R, Barmola JM, Chappellez J (2005): Atmospheric trends of the halon gases from polar firn air. Atmos Chem Phys Diskuss 5, 937–960

    Google Scholar 

  • Saito G, Shinohara H, Kazahaya K (2002): Successive sampling of fumarolic gases at Satsuma-Iwojima and Kuju volcanoes, southwest Japan: Evaluation of short-term variations and precision of the gas sampling and analytical techniques. Geochem J 36(1) 1–20

    CAS  Google Scholar 

  • Schwandner FM, Seward TM, Gize AP, Hall PA, Dietrich VJ (2004): Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). J Geophys Res 109, D04301 〈DOI: 10.1029/2003JD003890

  • Stoiber RE, Leggett DC, Jenkins TF, Murrmann RP, Rose WI (1971): Organic compounds in volcanic gas from Santiaguito volcano, Guatemala. Geol Soc Am Bull 82, 2299–2302

    Article  CAS  Google Scholar 

  • Symonds RB, Rose WI, Reed MH (1988): Contribution of Cl-and Fbearing gases to the atmosphere by volcanoes. Nature 334, 415–418

    Article  CAS  Google Scholar 

  • Symonds RB, Mizutani Y, Briggs PH (1996): Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan. J Volcanol Geotherm Res 73, 177–211

    Article  CAS  Google Scholar 

  • Tedesco D, Nagao K (1996): Radiogenic 4He, 21Ne and 40Ar in fumarolic gases on Vulcano: Implication for the presence of continental crust beneath the island. Earth Planet Sci Lett 144, 517–528

    Article  CAS  Google Scholar 

  • Thompson TM, Butler JH, Daube BC, Dutton GS, Elkins JW, Hall BD, Hurst DF, King DB, Kline ES, Lafleur BG, Lind J, Lovitz S, Mondeel DJ, Montzka SA, Moore FL, Nance JD, Neu JL, Romashkin PA, Scheffer A, Snible WJ (2004): 5. Halocarbons and other Atmospheric Trace Species. In: Schell RC, Buggle AM, Rosson RM, (eds), Climate Monitoring and Diagnostics Laboratory, Summary Report No 27, 2002–2003, 115–133, NOAA CMDL, Boulder, CO

    Google Scholar 

  • van Wyk de Vries B, Francis PW (1997): Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387, 387–390

    Article  Google Scholar 

  • Wahrenberger CM (1997): Some Aspects of the chemistry of volcanic gases. PhD thesis, 233 pp, ETH Zuerich

  • Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000): Crustal structure across the pacific margin of Nicaragua: Evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141, 759–777

    Article  Google Scholar 

  • WMO (2003): Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project — Report No 47. 498 pp, Geneva, 〈 http://www.wmo.ch/web/arep/reports/o3_assess_rep_2002_front_page.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Frische.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frische, M., Garofalo, K., Hansteen, T.H. et al. The origin of stable halogenated compounds in volcanic gases. Environ Sci Pollut Res 13, 406–413 (2006). https://doi.org/10.1065/espr2006.01.291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/espr2006.01.291

Keywords

Navigation