Skip to main content
Log in

Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ship-borne measurements of spectral as well as biologically effective UV irradiance have been performed on the German research vessel Polarstern during the Atlantic transect from Bremerhaven, Germany (53.5° N, 8.5° E), to Cape Town, South Africa (33.6° S, 18.3° E), from 13 10 to 17 11 2005. Such measurements are required to study UV effects on marine organisms. They are also necessary to validate satellite-derived surface UV irradiance. Cloud free radiative transfer calculations support the investigation of this latitudinal dependence. Input parameters, such as total ozone column and aerosol optical depth have been measured on board as well. Using these measured parameters, the modelled cloudless noontime UVA irradiance (320–400 nm) shows the expected dependence on varying minimum solar zenith angles (SZA) at different latitudes. The modelled cloudless noontime UVB irradiance (290–320 nm) does not show this clear dependence on SZA due to the strong influence of ozone absorption in this spectral range. The maximum daily dose of erythemal irradiance of 5420 J m−1 was observed on 14 11 2005, when the ship was in the tropical Atlantic south of the equator. The expected UV maximum should have been observed with the sun in the zenith during local noon (11 11). Stratiform clouds reduced the dose to 3835 J m−1. In comparison, the daily erythemal doses in the mid-latitudinal Bay of Biscay only reached values between 410 and 980 J m−1 depending on cloud conditions. The deviation in daily erythemal dose derived from different instruments is around 5%. The feasibility to perform ship-borne measurements of spectral UV irradiance is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Environmental Effects Assessment Panel, United Nations Environment Programme, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005, Photochem. Photobiol. Sci., 2006, 5, 13–24.

    Article  Google Scholar 

  2. J. Bischof, C. Wiencke, in Warnsignale aus den Polarregionen, ed. J. L. Lozan, H. Graßl, H.-W. Hubberten, P. Hupfer, L. Karbe and D. Piepenburg, Wissenschaftliche Auswertungen, Hamburg, 2006, ch. 5.3, pp. 260–264.

  3. The Effects of UV Radiation in the Marine Environment, ed. S. de More, S. Demers and M. Vernet, Cambridge University Press, Cambridge, 2000, 324 pp.

    Google Scholar 

  4. M. Y. Roleda, D. Hanelt, and C. Wiencke, Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implication for depth zonation of kelps on Helgoland (North Sea), Marine Biol., 2006, 148, 1201–1211.

    Article  CAS  Google Scholar 

  5. C. Wiencke, M. Y. Roleda, A. Gruber, M. N. Clayton, and K. Bischof, Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments, J. Ecol., 2006, 94, 455–463.

    Article  Google Scholar 

  6. R. T. Pinker, B. Zhang, and E. G. Dutton, Do Satellites Detect Trends in Surface Solar Radiation? Science, 2005, 308, 850–854.

    Article  CAS  Google Scholar 

  7. A. Vasilkov, N. Krotkov, J. Herman, C. McClain, K. Arrigo, and W. Robinson, Global mapping of underwater UV irradiances and DNA-weighted exposures using Total Ozone Mapping Spectrometer and Sea-viewing Wide Field-of-view Senosor data products, J. Geophys. Res., 2001, 106, 27205–27219.

    Article  CAS  Google Scholar 

  8. A. Arola, S. Kalliskota, P. N. den Outer, K. Edvardsen, G. Hansen, T. Koskela, T. J. Martin, J. Matthijsen, R. Meerkötter, P. Peeters, G. Seckmeyer, P. C. Simon, H. Slaper, P. Taalas, and J. Verdebout, Assessment of four methods to estimate surface UV radiation using satellite data, by comparison with ground measurements from four stations in Europe, J. Geophys. Res., 2002, 107, ACL11-1-ACL11-11.

  9. T. Hanken, H. Tüg, Development of a Multichannel UV-Spectroradiometer for Field Measurements, Environ. Sci. Pollut. Res., 2002, 4, 35–39.

    Google Scholar 

  10. S. Wuttke, G. Seckmeyer, O. Schrems and G. König-Langlo, Radiation Measurements at the German Antarctic Neumayer Station, in Ultraviolet Ground- and Space-based Measurements, Models and Effects V, ed. G. Bernhard, J. R. Slusser, J. R. Herman and W. Gao, Proc. of SPIE, 2005, vol. 5886, pp. 588608-1-588608-10, DOI: 10.1117/12.616352.

    Google Scholar 

  11. G. Bernhard, and G. Seckmeyer, Uncertainty of measurements of spectral solar UV irradiance, J. Geophys. Res., 1999, 104, 14321–14345.

    Article  Google Scholar 

  12. H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shift and slit width, Geophys. Res. Lett., 1995, 22, 2721–2724.

    Article  Google Scholar 

  13. G. Bernhard, and G. Seckmeyer, New Entrance Optics for Solar Spectral UV Measurements, Photochem. Photobiol., 1997, 65, 923–930.

    Article  CAS  Google Scholar 

  14. S. El Naggar, H. Gustat, H. Magister, and R. Rochlitzer, An electronic personal UV-B-dosimeter, J. Photochem. Photobiol., B, 1995, 31, 83–86.

    Article  CAS  Google Scholar 

  15. M. Y. Roleda, C. Wiencke, D. Hanelt, W. H. van de Poll, and A. Gruber, Sensitivity of Laminarialeszoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implication for depth distribution and seasonal reproduction, Plant, Cell Environ., 2005, 28, 466–479.

    Article  Google Scholar 

  16. G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, C. R. Booth, K. Lantz and R. L. McKenzie, Instruments to Measure Solar Ultraviolet Radiation Part 2: Broadband Instruments Measuring Erythemally Weighted Solar Irradiance, WMO GAW Report No. 164, Geneva, 2005.

    Google Scholar 

  17. W. D. Komhyr, Electrochemical concentration cells for gas analysis, Ann. Geophys., 1969, 25, 203–210.

    CAS  Google Scholar 

  18. WMO (World Meteorological Organization), Strategy for the implementation of the Global Atmosphere Watch Programme (2001–2007), WMO GAW Report No. 142, Geneva, 2001.

    Google Scholar 

  19. W. D. Komhyr, R. A. Barnes, G. B. Brothers, J. A. Lathrop, and D. P. Opperman, Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989, J. Geophys. Res., 1995, 100, 9231–9244.

    Article  CAS  Google Scholar 

  20. U. Köhler, A comparison of the New Filter Ozonometer MICROTOPS II with Dobson and Brewer Spectrometers at Hohenpeissenberg, Geophys. Res. Lett., 1999, 26, 1385–1388.

    Article  Google Scholar 

  21. A. I. Kudish, D. Abels, and M. Harari, Ultraviolet radiation properties as applied to photoclimatherapy at the Dead Sea, Int. J. Dermatol., 2003, 42, 359–365.

    Article  CAS  Google Scholar 

  22. S. Wuttke, Radiation Conditions in an Antarctic Environment, Reports on Polar and Marine Research 514, Bremerhaven, Germany, 2005, p. 140.

    Google Scholar 

  23. B. Mayer, and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations: Description and examples of use, Atmos. Chem. Phys., 2005, 5, 1855–1877.

    Article  CAS  Google Scholar 

  24. J. Calbó, D. Pagès, J.-A. González, Empirical studies of cloud effects on UV radiation: A review, Rev. Geophys., 2005, 43, RG2002. 10.1029/2004RG000155

  25. S. Wuttke, and G. Seckmeyer, Spectral radiance and sky luminance in Antarctica: a case study, Theor. Appl. Climatol., 2006, 85, 131–148.

    Article  Google Scholar 

  26. M. Blumthaler, J. Gröbner, M. Huber, and W. Ambach, Measuring spectral and spatial variations of UVA and UVB sky radiance, Geophys. Res. Lett., 1996, 23, 547–550.

    Article  CAS  Google Scholar 

  27. R. Grant, G. Heisler, and W. Gao, Clear sky radiance distributions in ultraviolet wavelength bands, Theor. Appl. Climatol., 1997, 56, 123–135.

    Article  Google Scholar 

  28. D. Lubin, and E. H. Jensen, Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends, Nature, 1995, 377, 710–713.

    Article  CAS  Google Scholar 

  29. G. Seckmeyer, R. Erb, and A. Albold, Transmittance of a cloud is wavelength-dependent in the UV-range, Geophys. Res. Lett., 1996, 23, 2753–2755.

    Article  Google Scholar 

  30. A. Kylling, A. Albold, and G. Seckmeyer, Transmittance of a cloud is wavelength-dependent in the UV-range: Physical interpretation, Geophys. Res. Lett., 1997, 24, 397–400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Wuttke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuttke, S., El Naggar, S., Bluszcz, T. et al. Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones. Photochem Photobiol Sci 6, 1081–1088 (2007). https://doi.org/10.1039/b617602j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617602j

Navigation