Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Accumulation, transformation and transport of microplastics in estuarine fronts

An Author Correction to this article was published on 19 May 2023

This article has been updated

Abstract

Millions of tons of riverine plastic waste enter the ocean via estuaries annually. The plastics accumulate, fragment, mix and interact with organisms in these dynamic systems, but such processes have received limited attention relative to open-ocean sites. In this Perspective, we discuss the occurrence and convergence of microplastics at estuarine fronts, focusing on their interactions with physical, geochemical and biological processes. Microplastic transformation can be enhanced within frontal systems owing to strong turbulence and interactions with sediment and biological particles, exacerbating the potential ecosystem impacts. The formation of microplastic hotspots at estuarine fronts could be a target for future plastic pollution mitigation efforts. Knowledge of the mechanics of plastic dispersal, accumulation and fate in frontal zones will, in turn, improve our understanding of plastic waste along the land–sea aquatic continuum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparisons of characteristics between estuarine fronts and open-ocean fronts.
Fig. 2: Types of estuarine surface fronts.
Fig. 3: Transport and transformation of microplastics in the frontal zone.
Fig. 4: Estuarine fronts and riverine plastic flux.

Similar content being viewed by others

Change history

References

  1. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  Google Scholar 

  2. Lebreton, L. & Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgr. Commun. 5, 1–11 (2019).

    Google Scholar 

  3. Meijer, L. J., van Emmerik, T., van der Ent, R., Schmidt, C. & Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 7, eaaz5803 (2021).

    Article  Google Scholar 

  4. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  Google Scholar 

  5. Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    Article  Google Scholar 

  6. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  Google Scholar 

  7. Lau, W. W. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  Google Scholar 

  8. Hinojosa, I. A., Rivadeneira, M. M. & Thiel, M. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Cont. Shelf Res. 31, 172–186 (2011).

    Article  Google Scholar 

  9. Rech, S. et al. Rivers as a source of marine litter — a study from the SE Pacific. Mar. Pollut. Bull. 82, 66–75 (2014).

    Article  Google Scholar 

  10. Cheung, P. K., Cheung, L. T. O. & Fok, L. Seasonal variation in the abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South China. Sci. Total. Environ. 562, 658–665 (2016).

    Article  Google Scholar 

  11. Acha, E. M. et al. The role of the Río de la Plata bottom salinity front in accumulating debris. Mar. Pollut. Bull. 46, 197–202 (2003).

    Article  Google Scholar 

  12. O’Donnell, J. Surface fronts in estuaries: a review. Estuaries 16, 12–39 (1993).

    Article  Google Scholar 

  13. Uncles, R. in Treatise On Estuarine And Coastal Science (eds Wolanski, E. & McLusky, D.) 5–20 (Elsevier, 2011).

  14. Marmorino, G. & Trump, C. Gravity current structure of the Chesapeake Bay outflow plume. J. Geophys. Res. Ocean. 105, 28847–28861 (2000).

    Article  Google Scholar 

  15. Nash, J. D. & Moum, J. N. River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437, 400–403 (2005).

    Article  Google Scholar 

  16. Collignon, A. G. & Stacey, M. T. Intratidal dynamics of fronts and lateral circulation at the shoal–channel interface in a partially stratified estuary. J. Phys. Oceanogr. 42, 869–883 (2012).

    Article  Google Scholar 

  17. O’Donnell, J., Marmorino, G. O. & Trump, C. L. Convergence and downwelling at a river plume front. J. Phys. Oceanogr. 28, 1481–1495 (1998).

    Article  Google Scholar 

  18. Mazzini, P. L. & Chant, R. J. Two-dimensional circulation and mixing in the far field of a surface-advected river plume. J. Geophys. Res. Ocean. 121, 3757–3776 (2016).

    Article  Google Scholar 

  19. MacDonald, D. G. & Geyer, W. R. Turbulent energy production and entrainment at a highly stratified estuarine front. J. Geophys. Res. Ocean. 109, C05004 (2004).

    Article  Google Scholar 

  20. Orton, P. M. & Jay, D. A. Observations at the tidal plume front of a high-volume river outflow. Geophys. Res. Lett. 32, L11605 (2005).

    Article  Google Scholar 

  21. Pritchard, M. & Huntley, D. A. A simplified energy and mixing budget for a small river plume discharge. J. Geophys. Res. Ocean. 111, C03019 (2006).

    Article  Google Scholar 

  22. Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M. & Bava, J. Marine fronts at the continental shelves of austral South America: physical and ecological processes. J. Mar. Syst. 44, 83–105 (2004).

    Article  Google Scholar 

  23. Klemas, V. & Polis, D. A study of density fronts and their effects on coastal pollutants. Remote. Sens. Environ. 6, 95–126 (1977).

    Article  Google Scholar 

  24. Tanabe, S. et al. Persistent organochlorines in coastal fronts. Mar. Pollut. Bull. 22, 344–351 (1991).

    Article  Google Scholar 

  25. Largier, J. L. Estuarine fronts: how important are they? Estuaries 16, 1–11 (1993).

    Article  Google Scholar 

  26. Poje, A. C. et al. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl Acad. Sci. USA 111, 12693–12698 (2014).

    Article  Google Scholar 

  27. McCarthy, J. J., Robinson, A. R. & Rothchild, B. J. in The Sea (eds Robinson, A. R., McCarthy, J. J. & Robinson, A. R.) Ch. 1 (John Wiley & Sons, 2002).

  28. Zhang, H. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 199, 74–86 (2017).

    Article  Google Scholar 

  29. Hunter, K. & Liss, P. The surface charge of suspended particles in estuarine and coastal waters. Nature 282, 823–825 (1979).

    Article  Google Scholar 

  30. Mosley, L. M. & Liss, P. S. Particle aggregation, pH changes and metal behaviour during estuarine mixing: review and integration. Mar. Freshw. Res. 71, 300–310 (2020).

    Article  Google Scholar 

  31. Payton, T. G., Beckingham, B. A. & Dustan, P. Microplastic exposure to zooplankton at tidal fronts in Charleston Harbor, SC USA. Estuar. Coast. Shelf Sci. 232, 106510 (2020).

    Article  Google Scholar 

  32. Atwood, E. C. et al. Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: comparing remote sensing and hydrodynamic modelling with in situ sample collections. Mar. Pollut. Bull. 138, 561–574 (2019).

    Article  Google Scholar 

  33. Pazos, R. S., Bauer, D. E. & Gómez, N. Microplastics integrating the coastal planktonic community in the inner zone of the Río de la Plata estuary (South America). Environ. Pollut. 243, 134–142 (2018).

    Article  Google Scholar 

  34. D’Asaro, E. A. et al. Ocean convergence and the dispersion of flotsam. Proc. Natl Acad. Sci. USA 115, 1162–1167 (2018).

    Article  Google Scholar 

  35. Geyer, W. & Ralston, D. Estuarine frontogenesis. J. Phys. Oceanogr. 45, 546–561 (2015).

    Article  Google Scholar 

  36. Brown, J., Turrell, W. & Simpson, J. Aerial surveys of axial convergent fronts in UK estuaries and the implications for pollution. Mar. Pollut. Bull. 22, 397–400 (1991).

    Article  Google Scholar 

  37. Carman, V. G. et al. Young green turtles, Chelonia mydas, exposed to plastic in a frontal area of the SW Atlantic. Mar. Pollut. Bull. 78, 56–62 (2014).

    Article  Google Scholar 

  38. Huzzey, L. M. & Brubaker, J. M. The formation of longitudinal fronts in a coastal plain estuary. J. Geophys. Res. Ocean. 93, 1329–1334 (1988).

    Article  Google Scholar 

  39. Nunes, R. & Simpson, J. Axial convergence in a well-mixed estuary. Estuar. Coast. Shelf Sci. 20, 637–649 (1985).

    Article  Google Scholar 

  40. Reeves, A. & Duck, R. Density fronts: sieves in the estuarine sediment transfer system? Phys. Chem. Earth Part B 26, 89–92 (2001).

    Article  Google Scholar 

  41. Corlett, W. B. & Geyer, W. R. Frontogenesis at estuarine junctions. Estuaries Coast. 43, 722–738 (2020).

    Article  Google Scholar 

  42. Bowman, M. J. & Iverson, R. L. in Oceanic Fronts In Coastal Processes (eds Bowman, M. J. & Esaias, W. E.) 87–104 (Springer, 1978).

  43. Largier, J. L. Tidal intrusion fronts. Estuaries 15, 26–39 (1992).

    Article  Google Scholar 

  44. Simpson, J. & Turrell, W. in Estuarine Variability (ed. Wolfe, D. A.) 139–152 (Elsevier, 1986).

  45. Marmorino, G. & Trump, C. High-resolution measurements made across a tidal intrusion front. J. Geophys. Res. Ocean. 101, 25661–25674 (1996).

    Article  Google Scholar 

  46. Horner-Devine, A. R., Hetland, R. D. & MacDonald, D. G. Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech. 47, 569–594 (2015).

    Article  Google Scholar 

  47. O’Donnell, J., Ackleson, S. G. & Levine, E. R. On the spatial scales of a river plume. J. Geophys. Res. 113, C04017 (2008).

    Google Scholar 

  48. Wang, T., Barkan, R., McWilliams, J. C. & Molemaker, M. J. Structure of submesoscale fronts of the Mississippi River plume. J. Phys. Oceanogr. 51, 1113–1131 (2021).

    Article  Google Scholar 

  49. Akan, Ç., McWilliams, J. C., Moghimi, S. & Özkan-Haller, H. T. Frontal dynamics at the edge of the Columbia River plume. Ocean. Model. 122, 1–12 (2018).

    Article  Google Scholar 

  50. Giddings, S. N. et al. Frontogenesis and frontal progression of a trapping-generated estuarine convergence front and its influence on mixing and stratification. Estuaries Coast. 35, 665–681 (2012).

    Article  Google Scholar 

  51. van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).

    Article  Google Scholar 

  52. Cózar, A. et al. Marine litter windrows: a strategic target to understand and manage the ocean plastic pollution. Front. Mar. Sci. 8, 98 (2021).

    Article  Google Scholar 

  53. Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).

    Article  Google Scholar 

  54. Suaria, G. et al. in The Handbook of Environmental Chemistry (eds Barceló, D. & Kostianoy, A. G.) 1–51 (Springer, 2021).

  55. Gove, J. M. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl Acad. Sci. USA 116, 24143–24149 (2019).

    Article  Google Scholar 

  56. Hajbane, S. et al. Coastal garbage patches: fronts accumulate plastic films at Ashmore Reef Marine Park (Pulau Pasir), Australia. Front. Mar. Sci. 8, 379 (2021).

    Article  Google Scholar 

  57. Law, K. L. et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738 (2014).

    Article  Google Scholar 

  58. Cohen, J. H., Internicola, A. M., Mason, R. A. & Kukulka, T. Observations and simulations of microplastic debris in a tide, wind, and freshwater-driven estuarine environment: the Delaware Bay. Environ. Sci. Technol. 53, 14204–14211 (2019).

    Article  Google Scholar 

  59. Bermúdez, M. et al. Unravelling spatio-temporal patterns of suspended microplastic concentration in the Natura 2000 Guadalquivir estuary (SW Spain): observations and model simulations. Mar. Pollut. Bull. 170, 112622 (2021).

    Article  Google Scholar 

  60. Isobe, A. et al. A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Micropl. Nanopl. 1, 1–14 (2021).

    Article  Google Scholar 

  61. Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H. & Kooi, M. Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environ. Sci. Technol. 54, 12307–12315 (2020).

    Article  Google Scholar 

  62. Egger, M., Sulu-Gambari, F. & Lebreton, L. First evidence of plastic fallout from the North Pacific Garbage Patch. Sci. Rep. 10, 1–10 (2020).

    Article  Google Scholar 

  63. Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).

    Article  Google Scholar 

  64. Andrady, A., Pandey, K. & Heikkilä, A. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci. 18, 804–825 (2019).

    Article  Google Scholar 

  65. Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376 (2017).

    Article  Google Scholar 

  66. Resmeriță, A.-M. et al. Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans. Mar. Pollut. Bull. 127, 387–395 (2018).

    Article  Google Scholar 

  67. Corcoran, P. L., Biesinger, M. C. & Grifi, M. Plastics and beaches: a degrading relationship. Mar. Pollut. Bull. 58, 80–84 (2009).

    Article  Google Scholar 

  68. Ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).

    Article  Google Scholar 

  69. Andrady, A., Law, K., Donohue, J. & Proskurowski, G. in MICRO 2016. Fate And Impact Of Microplastics In Marine Ecosystems (eds Baztan, J., Jorgensen, B., Pahl, S., Thompson, R. C. & Vanderlinden, J. P.) 91 (Elsevier, 2017).

  70. Sekudewicz, I., Dąbrowska, A. M. & Syczewski, M. D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total. Environ. 762, 143111 (2021).

    Article  Google Scholar 

  71. Campanale, C. et al. Microplastics and their possible sources: the example of Ofanto river in southeast Italy. Environ. Pollut. 258, 113284 (2020).

    Article  Google Scholar 

  72. Wang, J. et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258 (2017).

    Article  Google Scholar 

  73. Zhao, S., Zhu, L. & Li, D. Microplastic in three urban estuaries, China. Environ. Pollut. 206, 597–604 (2015).

    Article  Google Scholar 

  74. Geyer, W., Hill, P. & Kineke, G. The transport, transformation and dispersal of sediment by buoyant coastal flows. Cont. Shelf Res. 24, 927–949 (2004).

    Article  Google Scholar 

  75. Gregory, J. & O’Melia, C. R. Fundamentals of flocculation. Crit. Rev. Environ. Sci. Technol. 19, 185–230 (1989).

    Google Scholar 

  76. McCave, I. Size spectra and aggregation of suspended particles in the deep ocean. Deep Sea Res. A 31, 329–352 (1984).

    Article  Google Scholar 

  77. van Leussen, W. in Physical Processes in Estuaries (eds Dronkers, J & van Leussen, W.) 347–403 (Springer, 1988).

  78. Seyvet, O. & Navard, P. Collision-induced dispersion of agglomerate suspensions in a shear flow. J. Appl. Polym. Sci. 78, 1130–1133 (2000).

    Article  Google Scholar 

  79. Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).

    Article  Google Scholar 

  80. Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A. & Chubarenko, I. P. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments. Front. Mar. Sci. 5, 313 (2018).

    Article  Google Scholar 

  81. Chubarenko, I., Efimova, I., Bagaeva, M., Bagaev, A. & Isachenko, I. On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: insights from laboratory experiments. Mar. Pollut. Bull. 150, 110726 (2020).

    Article  Google Scholar 

  82. Enfrin, M. et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 384, 121393 (2020).

    Article  Google Scholar 

  83. Edzwald, J. K., Upchurch, J. B. & O’Melia, C. R. Coagulation in estuaries. Environ. Sci. Technol. 8, 58–63 (1974).

    Article  Google Scholar 

  84. Mosley, L. M., Hunter, K. A. & Ducker, W. A. Forces between colloid particles in natural waters. Environ. Sci. Technol. 37, 3303–3308 (2003).

    Article  Google Scholar 

  85. Sholkovitz, E. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 40, 831–845 (1976).

    Article  Google Scholar 

  86. Hunter, K. A. & Leonard, M. W. Colloid stability and aggregation in estuaries: 1. Aggregation kinetics of riverine dissolved iron after mixing with seawater. Geochim. Cosmochim. Acta 52, 1123–1130 (1988).

    Article  Google Scholar 

  87. Claesson, P. M. & Christenson, H. K. Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water. J. Chem. Phys. 92, 1650–1655 (1988).

    Article  Google Scholar 

  88. Israelachvili, J. & Pashley, R. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J. Colloid Interf. Sci. 98, 500–514 (1984).

    Article  Google Scholar 

  89. Geesey, G. Microbial exopolymers: ecological and economic considerations. Am. Soc. Microbiol. News 48, 9–14 (1982).

    Google Scholar 

  90. Alldredge, A. L. & Silver, M. W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).

    Article  Google Scholar 

  91. Verdugo, P. Marine microgels. Ann. Rev. Mar. Sci. 4, 375–400 (2012).

    Article  Google Scholar 

  92. Engel, A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. J. Plankton Res. 22, 485–497 (2000).

    Article  Google Scholar 

  93. Mopper, K., Ramana, K. S. & Drapeau, D. T. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Res. II 42, 47–73 (1995).

    Article  Google Scholar 

  94. Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922 (2017).

    Article  Google Scholar 

  95. Kiørboe, T. & Hansen, J. L. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15, 993–1018 (1993).

    Article  Google Scholar 

  96. Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333 (2002).

    Article  Google Scholar 

  97. Michels, J., Stippkugel, A., Lenz, M., Wirtz, K. & Engel, A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc. R. Soc. B 285, 20181203 (2018).

    Article  Google Scholar 

  98. Galgani, L. et al. Microplastics increase the marine production of particulate forms of organic matter. Environ. Res. Lett. 14, 124085 (2019).

    Article  Google Scholar 

  99. Long, M. et al. Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar. Chem. 175, 39–46 (2015).

    Article  Google Scholar 

  100. Mari, X. et al. Aggregation dynamics along a salinity gradient in the Bach Dang estuary, North Vietnam. Estuar. Coast. Shelf Sci. 96, 151–158 (2012).

    Article  Google Scholar 

  101. Thornton, D. C. Phytoplankton mucilage production in coastal waters: a dispersal mechanism in a front dominated system? Ethol. Ecol. Evol. 11, 179–185 (1999).

    Article  Google Scholar 

  102. Beauvais, S., Pedrotti, M., Egge, J., Iversen, K. & Marrasé, C. Effects of turbulence on TEP dynamics under contrasting nutrient conditions: implications for aggregation and sedimentation processes. Mar. Ecol. Prog. Ser. 323, 47–57 (2006).

    Article  Google Scholar 

  103. Degobbis, D. et al. Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. Total Environ. 165, 43–58 (1995).

    Article  Google Scholar 

  104. Zhao, S., Ward, J. E., Danley, M. & Mincer, T. J. Field-based evidence for microplastic in marine aggregates and mussels: implications for trophic transfer. Environ. Sci. Technol. 52, 11038–11048 (2018).

    Article  Google Scholar 

  105. Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142 (2009).

    Article  Google Scholar 

  106. Wotton, R. S. & Malmqvist, B. Feces in aquatic ecosystems: feeding animals transform organic matter into fecal pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. BioScience 51, 537–544 (2001).

    Article  Google Scholar 

  107. Arlinghaus, P., Zhang, W., Wrede, A., Schrum, C. & Neumann, A. Impact of benthos on morphodynamics from a modeling perspective. Earth Sci. Rev. 221, 103803 (2021).

    Article  Google Scholar 

  108. Bhaskar, P. & Bhosle, N. B. Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science 88, 45–53 (2005).

    Google Scholar 

  109. McWilliams, J. C. Oceanic frontogenesis. Annu. Rev. Mar. Sci. 13, 227–253 (2021).

    Article  Google Scholar 

  110. Simpson, J. & James, I. in Baroclinic Processes On Continental Shelves Vol. 3 (ed. Mooers, C. N. K.) 63–93 (American Geophysical Union, 1986).

  111. Taylor, J. R. Accumulation and subduction of buoyant material at submesoscale fronts. J. Phys. Oceanogr. 48, 1233–1241 (2018).

    Article  Google Scholar 

  112. Brunner, K., Kukulka, T., Proskurowski, G. & Law, K. L. Passive buoyant tracers in the ocean surface boundary layer. 2. Observations and simulations of microplastic marine debris. J. Geophys. Res. Ocean. 120, 7559–7573 (2015).

    Article  Google Scholar 

  113. Porter, A., Lyons, B. P., Galloway, T. S. & Lewis, C. Role of marine snows in microplastic fate and bioavailability. Environ. Sci. Technol. 52, 7111–7119 (2018).

    Article  Google Scholar 

  114. Zhao, S., Danley, M., Ward, J. E., Li, D. & Mincer, T. J. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal. Methods 9, 1470–1478 (2017).

    Article  Google Scholar 

  115. Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50, 3239–3246 (2016).

    Article  Google Scholar 

  116. Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 15, e0232746 (2020).

    Article  Google Scholar 

  117. Trainic, M. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 1, 64 (2020).

    Article  Google Scholar 

  118. Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article  Google Scholar 

  119. Kudela, R. M. et al. Multiple trophic levels fueled by recirculation in the Columbia River plume. Geophys. Res. Lett. 37, 1029/2010GL044342 (2010).

    Article  Google Scholar 

  120. Zamon, J. E., Phillips, E. M. & Guy, T. J. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River. Deep. Sea Res. II 107, 85–95 (2014).

    Article  Google Scholar 

  121. Scotti, A. & Pineda, J. Plankton accumulation and transport in propagating nonlinear internal fronts. J. Mar. Res. 65, 117–145 (2007).

    Article  Google Scholar 

  122. Choy, E. S., Kimpe, L. E., Mallory, M. L., Smol, J. P. & Blais, J. M. Contamination of an Arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds. Environ. Pollut. 158, 3431–3438 (2010).

    Article  Google Scholar 

  123. Ewald, G., Larsson, P., Linge, H., Okla, L. & Szarzi, N. Biotransport of organic pollutants to an inland Alaska lake by migrating sockeye salmon (Oncorhynchus nerka). Arctic 51, 40–47 (1998).

    Article  Google Scholar 

  124. Montory, M. et al. Biotransport of persistent organic pollutants in the Southern Hemisphere by invasive Chinook salmon (Oncorhynchus tshawytscha) in the rivers of northern Chilean Patagonia, a UNESCO biosphere reserve. Environ. Int. 142, 105803 (2020).

    Article  Google Scholar 

  125. De Robertis, A. et al. Columbia River plume fronts. II. Distribution, abundance, and feeding ecology of juvenile salmon. Mar. Ecol. Prog. Ser. 299, 33–44 (2005).

    Article  Google Scholar 

  126. Lange, M. & van Sebille, E. Parcels v0. 9: prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model. Dev. 10, 4175–4186 (2017).

    Article  Google Scholar 

  127. van Sebille, E. et al. Lagrangian ocean analysis: fundamentals and practices. Ocean. Model. 121, 49–75 (2018).

    Article  Google Scholar 

  128. Onink, V., van Sebille, E. & Laufkötter, C. Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface. Geosci. Model. Dev. 15, 1995–2012 (2022).

    Article  Google Scholar 

  129. Genc, A. N., Vural, N. & Balas, L. Modeling transport of microplastics in enclosed coastal waters: a case study in the Fethiye inner bay. Mar. Pollut. Bull. 150, 110747 (2020).

    Article  Google Scholar 

  130. Jalón-Rojas, I., Wang, X. H. & Fredj, E. A 3D numerical model to track marine plastic debris (TrackMPD): sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Mar. Pollut. Bull. 141, 256–272 (2019).

    Article  Google Scholar 

  131. Sousa, M. C. et al. Modelling the distribution of microplastics released by wastewater treatment plants in Ria de Vigo (NW Iberian Peninsula). Mar. Pollut. Bull. 166, 112227 (2021).

    Article  Google Scholar 

  132. López, A. G., Najjar, R. G., Friedrichs, M. A., Hickner, M. A. & Wardrop, D. H. Estuaries as filters for riverine microplastics: simulations in a large, coastal-plain estuary. Front. Environ. Sci. 8, https://doi.org/10.3389/fmars.2021.715924 (2021).

  133. Mountford, A. & Morales Maqueda, M. Eulerian modeling of the three-dimensional distribution of seven popular microplastic types in the global ocean. J. Geophys. Res. Ocean. 124, 8558–8573 (2019).

    Article  Google Scholar 

  134. Fischer, R. et al. Modelling submerged biofouled microplastics and their vertical trajectories. Biogeosciences 19, 2211–2234 (2022).

    Article  Google Scholar 

  135. Kaandorp, M. L., Dijkstra, H. A. & van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 16, 054075 (2021).

    Article  Google Scholar 

  136. Sterl, M. F., Delandmeter, P. & van Sebille, E. Influence of barotropic tidal currents on transport and accumulation of floating microplastics in the global open ocean. J. Geophys. Res. Ocean. 125, e2019JC015583 (2020).

    Article  Google Scholar 

  137. Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the global dispersal of marine microplastic. J. Geophys. Res. Ocean. 124, 6086–6096 (2019).

    Article  Google Scholar 

  138. Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9, e111913 (2014).

    Article  Google Scholar 

  139. Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    Article  Google Scholar 

  140. Kaandorp, M. L., Dijkstra, H. A. & van Sebille, E. Closing the Mediterranean marine floating plastic mass budget: Inverse modeling of sources and sinks. Environ. Sci. Technol. 54, 11980–11989 (2020).

    Article  Google Scholar 

  141. Cloux, S. et al. Validation of a Lagrangian model for large-scale macroplastic tracer transport using mussel-peg in NW Spain (Ría de Arousa). Sci. Total Environ. 822, 153338 (2022).

    Article  Google Scholar 

  142. Cheng, M. L. et al. A baseline for microplast particle occurrence and distribution in Great Bay Estuary. Mar. Pollut. Bull. 170, 112653 (2021).

    Article  Google Scholar 

  143. Koelmans, A. A., Kooi, M., Law, K. L. & van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).

    Article  Google Scholar 

  144. Kooi, M., van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    Article  Google Scholar 

  145. Isobe, A., Iwasaki, S., Uchida, K. & Tokai, T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 10, 1–13 (2019).

    Article  Google Scholar 

  146. Karati, K. K. et al. River plume fronts and their implications for the biological production of the Bay of Bengal, Indian Ocean. Mar. Ecol. Prog. Ser. 597, 79–98 (2018).

    Article  Google Scholar 

  147. Steer, M., Cole, M., Thompson, R. C. & Lindeque, P. K. Microplastic ingestion in fish larvae in the western English Channel. Environ. Pollut. 226, 250–259 (2017).

    Article  Google Scholar 

  148. Taha, Z. D., Amin, R. M., Anuar, S. T., Nasser, A. A. A. & Sohaimi, E. S. Microplastics in seawater and zooplankton: a case study from Terengganu estuary and offshore waters, Malaysia. Sci. Total Environ. 786, 147466 (2021).

    Article  Google Scholar 

  149. Desforges, J.-P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69, 320–330 (2015).

    Article  Google Scholar 

  150. Jaafar, N. et al. Occurrence, distribution and characteristics of microplastics in gastrointestinal tract and gills of commercial marine fish from Malaysia. Sci. Total Environ. 799, 149457 (2021).

    Article  Google Scholar 

  151. Wieczorek, A. M., Croot, P. L., Lombard, F., Sheahan, J. N. & Doyle, T. K. Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environ. Sci. Technol. 53, 5387–5395 (2019).

    Article  Google Scholar 

  152. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  Google Scholar 

  153. Lusher, A., Hollman, P. & Mendoza-Hill, J. Microplastics In Fisheries And Aquaculture: Status Of Knowledge On Their Occurrence And Implications For Aquatic Organisms And Food Safety (FAO, 2017); https://www.fao.org/3/I7677E/I7677E.pdf.

  154. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  Google Scholar 

  155. Mohammed, A. in New Insights Into Toxicity And Drug Testing (ed. Gowder S.) 49–62 (Intech, 2013).

  156. Acha, E. M., Piola, A., Iribarne, O. & Mianzan, H. in Ecological Processes At Marine Fronts: Oases In The Ocean (eds Acha, E. M., Piola, A., Iribarne, O. & Mianzan, H.) 13–32 (Springer, 2015).

  157. Xu, J. et al. Unpalatable plastic: efficient taste discrimination of microplastics in planktonic copepods. Environ. Sci. Technol. 56, 6455–6465 (2022).

    Article  Google Scholar 

  158. Cole, M. et al. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a coldwater copepod. Environ. Sci. Technol. 53, 7075–7082 (2019).

    Article  Google Scholar 

  159. Botterell, Z. L. et al. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals. Environ. Sci. Technol. 54, 12024–12033 (2020).

    Article  Google Scholar 

  160. Savoca, M. S., Machovsky-Capuska, G. E., Andrades, R. & Santos, R. G. Plastic ingestion: understanding causes and impacts. Front. Environ. Sci. https://doi.org/10.3389/fmars.2022.905336 (2022).

    Article  Google Scholar 

  161. Vroom, R. J., Koelmans, A. A., Besseling, E. & Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 231, 987–996 (2017).

    Article  Google Scholar 

  162. Suhrhoff, T. J. & Scholz-Böttcher, B. M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment. Mar. Pollut. Bull. 102, 84–94 (2016).

    Article  Google Scholar 

  163. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018).

    Article  Google Scholar 

  164. Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    Article  Google Scholar 

  165. Groh, K. J. et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 651, 3253–3268 (2019).

    Article  Google Scholar 

  166. Seeley, M. E., Song, B., Passie, R. & Hale, R. C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 11, 1–10 (2020).

    Article  Google Scholar 

  167. Wei, W. et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ. Sci. Technol. 53, 2509–2517 (2019).

    Article  Google Scholar 

  168. van Emmerik, T. & Schwarz, A. Plastic debris in rivers. Wiley Interdiscip. Rev. Water 7, e1398 (2019).

    Google Scholar 

  169. Gasperi, J., Dris, R., Bonin, T., Rocher, V. & Tassin, B. Assessment of floating plastic debris in surface water along the Seine river. Environ. Pollut. 195, 163–166 (2014).

    Article  Google Scholar 

  170. Lindquist, A. Baltimore’s Mr. Trash Wheel. J. Ocean. Technol. 11, 28–35 (2016).

    Google Scholar 

  171. Kilcher, L. F. & Nash, J. D. Structure and dynamics of the Columbia River tidal plume front. J. Geophys. Res. Ocean. 115, C05S90 (2010).

    Article  Google Scholar 

  172. Schreyers, L. et al. Plastic plants: the role of water hyacinths in plastic transport in tropical rivers. Front. Environ. Sci. 9, 177 (2021).

    Article  Google Scholar 

  173. Martin, C. et al. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 131, 662–673 (2018).

    Article  Google Scholar 

  174. Geraeds, M., van Emmerik, T., de Vries, R. & Bin Ab Razak, M. S. Riverine plastic litter monitoring using unmanned aerial vehicles (UAVs). Remote. Sens. 11, 2045 (2019).

    Article  Google Scholar 

  175. Eggleston, D. B., Armstrong, D. A., Elis, W. E. & Patton, W. S. Estuarine fronts as conduits for larval transport: hydrodynamics and spatial distribution of Dungeness crab postlarvae. Mar. Ecol. Prog. Ser. 164, 73–82 (1998).

    Article  Google Scholar 

  176. Sherman, P. & van Sebille, E. Modeling marine surface microplastic transport to assess optimal removal locations. Environ. Res. Lett. 11, 014006 (2016).

    Article  Google Scholar 

  177. Haberstroh, C. J., Arias, M. E., Yin, Z. & Wang, M. C. Effects of hydrodynamics on the cross-sectional distribution and transport of plastic in an urban coastal river. Water Environ. Res. 93, 186–200 (2021).

    Article  Google Scholar 

  178. Lebreton, L. C. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    Article  Google Scholar 

  179. Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).

    Article  Google Scholar 

  180. Borrelle, S. B. et al. Opinion: why we need an international agreement on marine plastic pollution. Proc. Natl Acad. Sci. USA 114, 9994–9997 (2017).

    Article  Google Scholar 

  181. Haberstroh, C. J., Arias, M. E., Yin, Z., Sok, T. & Wang, M. C. Plastic transport in a complex confluence of the Mekong river in Cambodia. Environ. Res. Lett. 16, 095009 (2021).

    Article  Google Scholar 

  182. van Emmerik, T., Loozen, M., van Oeveren, K., Buschman, F. & Prinsen, G. Riverine plastic emission from Jakarta into the ocean. Environ. Res. Lett. 14, 084033 (2019).

    Article  Google Scholar 

  183. van Emmerik, T., Strady, E., Kieu-Le, T.-C., Nguyen, L. & Gratiot, N. Seasonality of riverine macroplastic transport. Sci. Rep. 9, 13549 (2019).

    Article  Google Scholar 

  184. van Calcar, C. & van Emmerik, T. Abundance of plastic debris across European and Asian rivers. Environ. Res. Lett. 14, 124051 (2019).

    Article  Google Scholar 

  185. Mellink, Y., van Emmerik, T., Kooi, M., Laufkötter, C. & Niemann, H. The plastic pathfinder: a macroplastic transport and fate model for terrestrial environments. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.979685 (2022).

    Article  Google Scholar 

  186. Tramoy, R. et al. Transfer dynamics of macroplastics in estuaries — new insights from the Seine estuary. Part 2. Short-term dynamics based on GPS-trackers. Mar. Pollut. Bull. 160, 111566 (2020).

    Article  Google Scholar 

  187. Macklin, J. T., Ferrier, G., Neill, S. & Folkard, G. Alongtrack interferometry (ATI) observations of currents and fronts in the Tay estuary, Scotland. EARSeL eProc. 3, 179 (2004).

    Google Scholar 

  188. O’Melia, C. R. Aquasols: the behavior of small particles in aquatic systems. Environ. Sci. Technol. 14, 1052–1060 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

We thank X. Li for her assistance with the illustration in the original Figs. 2 and 3. Funding support was provided through the Asia-Pacific Network for Global Change Research (CRRP2021-08MY-Zhao to T.W., R.M.A. and S.Z.). This study was also supported by the National Natural Science Foundation of China (42076006) and by the European Union’s Horizon 2020 Research And Innovation Programme under a Marie Skłodowska-Curie grant (PLOCEAN 882682 to L.G.), an International Partnership Research Grant (UMT 55379 to R.M.A.) and the National Research Foundation Singapore through the Marine Environmental (to M.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. initiated the writing. T.W. and S.Z. co-led the design and writing of the article and contributed equally to this article. All co-authors provided input on the manuscript text, figures and discussion of scientific content.

Corresponding author

Correspondence to Shiye Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Barbara Beckingham, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhao, S., Zhu, L. et al. Accumulation, transformation and transport of microplastics in estuarine fronts. Nat Rev Earth Environ 3, 795–805 (2022). https://doi.org/10.1038/s43017-022-00349-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00349-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene