Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Astronomical pacing of late Palaeocene to early Eocene global warming events

Abstract

At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene–Eocene thermal maximum1,2,3,4. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates5,6, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually7, comet impact8, explosive volcanism9,10 or ocean current reorganization and erosion at continental slopes11, whereas orbital forcing has been excluded12. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge13, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene–Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene–Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the 405-kyr and 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk carbonate δ 13 C and magnetic susceptibility (MS) records across the Elmo horizon at five ODP Leg 208 sites.
Figure 2: Stable isotope series of bulk sediment and single foraminifer specimens across the Elmo horizon at Site 1263.
Figure 3: Astronomical tuning of the lower Eocene sediments at Walvis ridge to two different orbital computations.

Similar content being viewed by others

References

  1. Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Norris, R. D. & Röhl, U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401, 775–778 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991)

    Article  ADS  Google Scholar 

  4. Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  6. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Thomas, E. & Shackleton, N. J. in Correlation of the Early Paleogene in Northwestern Europe (eds Knox, R. W. O. B., Corfield, R. M. & Dunay, R. E.) 401–441 (Special Publication 101, Geological Society, London, 1996).

  8. Kent, D. V. et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211, 13–26 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Bralower, T. J. et al. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology 25, 963–966 (1997)

    Article  ADS  Google Scholar 

  10. Schmitz, B. et al. Basaltic explosive volcanism, but no comet impact, at the Paleocene-Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth Planet. Sci. Lett. 225, 1–17 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Katz, M. E., Cramer, B. S., Mountain, G. S., Katz, S. & Miller, K. G. Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 1–14 (2001)

    Article  Google Scholar 

  12. Cramer, B. S., Wright, J. D., Kent, D. V. & Aubry, M.-P. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18, doi:10.1029/2003PA000909 (2003)

  13. Zachos, J. C., et al. in Early Cenozoic Extreme Climates: The Walvis Ridge Transect (eds Zachos, J. C., Kroon, D. & Blum, P.) (Ocean Drilling Program, College Station, Texas, 2004)

    Google Scholar 

  14. Thomas, E. & Zachos, J. C. Was the late Paleocene thermal maximum a unique event? Geol. För. Stockh. Förh. [Trans. Geol. Soc. Stockholm] 122, 169–170 (2000)

    Google Scholar 

  15. Bujak, J. P. & Brinkhuis, H. in Late Paleocene - Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 277–295 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  16. Röhl, U., Norris, R. D. & Ogg, J. G. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 567–589 (Special Paper 369, Geological Society of America, Boulder, Colorado, 2003).

  17. Thomas, E., Zachos, J. C. & Bralower, T. J. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. & Wing, S. L.) 132–160 (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  18. Röhl, U., Bralower, T. J., Norris, G. & Wefer, G. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28, 927–930 (2000)

    Article  ADS  Google Scholar 

  19. Varadi, F., Bunnegar, B. & Ghil, M. Successive refinements in long-term integrations of planetary orbits. Astrophys. J. 592, 620–630 (2003)

    Article  ADS  Google Scholar 

  20. Laskar, J. et al. A long term numerical solution for the insolation quantities of Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  21. Machlus, M., Hemming, S. R., Olsen, P. E. & Christie-Blick, N. Eocene calibration of geomagnetic polarity time scale reevaluated: Evidence from the Green River Formation of Wyoming. Geology 32, 137–140 (2004)

    Article  ADS  Google Scholar 

  22. Koch, P. L. et al. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 49–64 (Special Paper 369, Geological Society of America, Boulder, Colorado, 2003).

  23. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science (in the press)

  24. O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51, 5547–5558 (1969)

    Article  ADS  CAS  Google Scholar 

  25. Shackleton, N. J. Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature 215, 15–17 (1967)

    Article  ADS  CAS  Google Scholar 

  26. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1151–1154 (2003)

    Article  Google Scholar 

  27. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research used samples and data provided by the Ocean Drilling Program (ODP). This work was supported by the Netherlands Organisation for Scientific Research (L.J.L., A.S. and D.K.), Utrecht Biogeology Centre (A.S.), Deutsche Forschungsgemeinschaft (U.R.), and the National Science Foundation (J.C.Z., E.T. and J.B.). We thank the scientific and non-scientific crew of ODP Leg 208, J. Suhonen in particular, and G. Ittman, A. E. van Dijk, G. M. Ganssen, S. J. A. Jung, H. B. Vonhof, P. L. Koch, H. Brinkhuis, F. J. Hilgen, T. Kouwenhoven and J. W. Zachariasse for technical support, advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Lourens.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Supplementary Figures S1-S6, additional references and extended description of methods used and discussion on: magnetobiostratigraphy; magnetic susceptibility and CaCO3 weight% scales shown in Figure 1; spectral results and astronomical phase relations; and global significance of the Elmo horizon/ETM2 event. (PDF 3096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourens, L., Sluijs, A., Kroon, D. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005). https://doi.org/10.1038/nature03814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03814

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing