Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry

Abstract

The relative timings of the last deglacial warming in the Southern and Northern hemispheres are not well constrained, but are a crucial component in understanding the mechanisms of deglaciation1. A clearer picture of the degree of interhemispheric synchrony has been obscured by a dearth of high-resolution temperature records that can be tied to the absolute calendar timescale. Moreover, the quantification of tropical temperatures during the last glacial cycle is controversial2–8. Here we apply the alkenone method of sea surface temperature reconstruction9,10 to several high-resolution sediment cores recovered from the tropical Indian Ocean between 20° N and 20° S. The inferred initial sea surface temperature warming 15,000 calendar years ago at 20° S is in phase with Northern Hemisphere sea (this study) and air11 temperature changes, but lags Antarctic warming12–14 by several millennia. This finding, along with the results of recent modelling studies15,16, provides strong support for the idea that changes in the ocean's global thermohaline circulation were not the only cause of interhemispheric climate teleconnection during the last deglaciation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. Geotimes 41(2), 40–41 (1996).

    Google Scholar 

  2. Webster, P. J. & Streten, N. A. Quat. Res. 10, 279–309 (1978).

    Article  Google Scholar 

  3. Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Science 263, 663–665 (1994).

    Article  ADS  CAS  Google Scholar 

  4. CLIMAP Project Members Map and Chart Ser. C36 (Geol. Soc. Am., Boulder, 1981).

  5. Prell, W. L. Tech. Rep. TRO25 (Dept of Energy, Washington DC, 1985).

  6. Anderson, D. M., Prell, W. L. & Barratt, N. J. Paleoceanography 4, 615–627 (1989).

    Article  ADS  Google Scholar 

  7. Broecker, W. S. Quat. Res. 26, 121–134 (1986).

    Article  CAS  Google Scholar 

  8. Stott, L. D. & Tang, C. M. Paleoceanography 11, 37–56 (1996).

    Article  ADS  Google Scholar 

  9. Brassell, S. C., Eglinton, G., Marlowe, L. T., Pflaumann, U. & Sarnthein, M. Nature 320, 129–133 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Prahl, F. G. & Wakeham, S. G. Nature 330, 367–369 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  12. Sowers, T. & Bender, M. Science 269, 210–214 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Hammer, C. U., Clausen, H. B. & Langway, C. C. Ann. Glaciol. 20, 115–120 (1994).

    Article  ADS  Google Scholar 

  14. Jouzel, J. et al. Clim. Dyn. 11, 151–161 (1995).

    Article  Google Scholar 

  15. Mikolajewicz, U. A Meltwater Induced Collapse of the ‘Conveyor Belt’ 1–25 (Rep. 189, Max-Planck-Inst. für Meteorol., Hamburg, 1996).

    Google Scholar 

  16. Stocker, T. F. & Wright, D. G. Paleoceanography 11, 773–795 (1996).

    Article  ADS  Google Scholar 

  17. Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W. & Gunderstrup, N. Tellus 47B, 624–629 (1995).

    Article  ADS  Google Scholar 

  18. Sonzogni, C. et al. Quat. Res. (in the press).

  19. Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Prahl, F. G., Pisias, N., Sparrow, M. A. & Sabin, A. Paleoceanography 10, 763–773 (1995).

    Article  ADS  Google Scholar 

  21. Volkman, J. K., Barrett, S. M., Blackburn, S. I. & Sikes, E. L. Geochim. Cosmochim. Acta 59, 513–520 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Sikes, E. L., Farrington, J. W. & Keigwin, L. D. Earth Planet. Sci. Lett. 104, 34–47 (1991).

    Article  ADS  Google Scholar 

  23. Rosell-Melé, A., Eglinton, G., Pflaumann, U. & Sartthein, M. Geochim. Cosmochim. Acta 59, 3099–3107 (1995).

    Article  ADS  Google Scholar 

  24. Shackleton, N. J., Hall, M. A., Pate, D., Meynadier, L. & Valet, P. Paleoceanography 8, 141–148 (1993).

    Article  ADS  Google Scholar 

  25. Meynadier, L., Valet, J. P., Weeks, R., Shackleton, N. J. & Lee Hagee, V. Earth Planet Sci. Lett. 114, 39–57 (1992).

    Article  ADS  Google Scholar 

  26. Vergnaud Grazzini, C., Caulet, J. P. & Vénec-Peyré, M.-T. Bull. Soc. Géol. Fr. 166, 259–270 (1995).

    Google Scholar 

  27. Jouzel, J. et al. Nature 364, 407–412 (1993).

    Article  ADS  Google Scholar 

  28. Duplessy, J. C., Bé, A. W. H. & Blanc, P. L. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 9–46 (1981).

    Article  Google Scholar 

  29. Duplessy, J. C. et al. Earth Planet. Sci. Lett. 103, 27–40 (1991).

    Article  ADS  Google Scholar 

  30. Bard, E., Arnold, M., Fairbanks, R. G. & Hamelin, B. Radiocarbon 35, 191–199 (1993).

    Article  CAS  Google Scholar 

  31. Hammer, C. U. et al. The Stratigraphic Dating of the GRIP Ice Core (Rep. 1 Niels Bohr Inst., Copenhagen, in the press).

  32. Chappellaz, J. et al. Nature 366, 443–445 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Denton, G. H. & Hendy, C. H. Science 264, 1434–1437 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Lowell, T. V. et al. Science 269, 1541–1549 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Mabin, M. C. G. Science 271, 668–670 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Bard, E. et al. Nature 382, 241–244 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Del Genio, A., Lacis, A. A. & Ruedy, R. A. Nature 351, 382–385 (1991).

    Article  ADS  Google Scholar 

  38. Waelbroeck, C. et al. Clim. Dyn. 12, 113–123 (1995).

    Article  Google Scholar 

  39. Johnsen, S. J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Nature 235, 429–434 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997). https://doi.org/10.1038/385707a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385707a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing