Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene

Abstract

THE most common and the most primitive pathway of the three different photosynthetic pathways used by plants is the C3 pathway, or Calvin cycle, which is characterized by an initial CO2 carboxylation to form phosphoglyceric acid, a 3-carbon acid. The carbon isotope composition (δ13C) of C3 plants varies from about −23 to −35%l–3 and averages about −26%. Virtually all trees, most shrubs, herbs and forbs, and cool-season grasses and sedges use the C3 pathway. In the C4 pathway (Hatch–Slack cycle), CO2 initially combines with phosphoenol pyruvate to form the 4-carbon acids malate or aspartic acid, which are translocated to bundle sheath cells where CO2 is released and used in Calvin cycle reactions1–4. The carbon isotope composition of C4 plants ranges from about −10 to −14%, averaging about −13% for modern plants1–3. Warm-season grasses and sedges are the most abundant C4 plants, although C4 photosynthesis is found in about twenty families5. The third photosynthetic pathway, CAM, combines features of both C3 and C4 pathways. CAM plants, which include many succulents, have intermediate carbon isotope compositions and are also adapted to conditions of water and CO2 stress. The modern global ecosystem has a significant component of C4 plants, primarily in tropical savannas, temperate grasslands and semi-desert scrublands. Studies of palaeovegetation from palaeosols and palaeodiet from fossil tooth enamel indicate a rapid expansion of C4 biomass in both the Old World and the New World starting 7 to 5 million years ago. We propose that the global expansion of C4 biomass may be related to lower atmospheric carbon dioxide levels because C4 photosynthesis is favoured over C3 photosynthesis when there are low concentrations of carbon dioxide in the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Deines, P. in Handbook of Environmental Isotope Geochemistry. 1. The Terrestrial Environment. (eds Fontes, J. C. & Fritz, P.) 329–406 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  2. O'Leary, M. H. Bioscience 38, 325–326 (1988).

    Article  Google Scholar 

  3. Farquhar, G. D., Ehleringer, J. R. & Hubik, K. T. An. Rev. Plant Physiol. Plant molec. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  4. Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. Trends Ecol. Evol. 6, 95–97 (1991).

    Article  CAS  Google Scholar 

  5. Smith, B. N. in CRC Handbook of Biosolar Resources (ed. Zaborsky, O. R.) 99–118 (CRC Press, Baton Rouge, 1982).

    Google Scholar 

  6. Cerling, T. E., Quade, J. & Bowman, J. R. Nature 341, 138–139 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Quade, J., Cerling T. E. & Bowman, J. R. Geol. Soc. Am. Bull. 101, 464–475 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Sullivan, C. H. & Krueger, H. W. Nature 292, 333–335 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Lee-Thorp, J. A. & van der Merwe, N. J. South Afr. Jour. Sci. 83, 712–713 (1987).

    Google Scholar 

  10. Cerling, T. E. & Hay, R. L. Quat. Res. 25, 63–78 (1986).

    Article  CAS  Google Scholar 

  11. Cerling, T. E., Bowman, J. R. & O'Neil, J. R. Palaeogeogr. Palaeoclimat. Palaeoecol. 63, 335–356 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Quade, J., Cerling, T. E. & Bowman, J. R. Nature 342, 163–165 (1989).

    Article  ADS  Google Scholar 

  13. Cerling, T. E. Palaeogeogr. Palaeoclimat. Palaeoecol. 97, 241–247 (1992).

    Article  ADS  Google Scholar 

  14. Lee-Thorp, J. A., van der Merwe, N. J. & Brain, C. K. J. hum. Evol. 18, 183–190 (1989).

    Article  Google Scholar 

  15. Thackerey, J. F. et al. Nature 347, 751–753 (1990).

    Article  ADS  Google Scholar 

  16. Quade, J. et al. Chem. Geol. 94, 183–194 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Koch, P. L., Zachos, J. C. & Gingerich, P. D. Nature 358, 319–322 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Cerling, T. E. Am. J. Sci. 291, 377–400 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Ehleringer, J. R., Field, C. B., Lin, Z. F. & Kuo, C. Y. Oecologia 70, 520–526 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Ehleringer, J. R., & Cooper, T. A. Oecologia 76, 562–566 (1988).

    Article  ADS  Google Scholar 

  21. Delucia, E. H., Schlesinger, W. H. & Billings, W. D. Ecology 69, 303–311 (1988).

    Article  Google Scholar 

  22. Birkeland, P. W. Soils and Geomorphology (Oxford Univ. Press, New York, 1984).

    Google Scholar 

  23. Jenny, H. The Soil Resource (Springer, Berlin, 1980).

    Book  Google Scholar 

  24. Barry, J. C., Lindsay, E. H. & Jacobs, L. L. Palaeogeogr. Palaeoclimat Palaeoecol. 37, 95–130 (1982).

    Article  ADS  Google Scholar 

  25. Flynn, L. J. & Jacobs, L. L. Palaeogeogr. Palaeoclimat. Palaeoecol. 33, 129–138 (1982).

    Article  ADS  Google Scholar 

  26. Barry, J. C., Johnson, N. M., Raza, S. M. & Jacobs, L. L. Geology 13, 637–640 (1985).

    Article  ADS  Google Scholar 

  27. Barry, J. C. & Flynn, L. J. in European Neogene Mammalian Chronology (ed. Lindsay, E. H.) 557–571 (Plenum, New York, 1990).

    Book  Google Scholar 

  28. MacFadden, B. J. Fossil Horses: Systematics, Paleobiology and Evolution of the Family Equidae (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  29. Cerling, T. E. Global Biogeochem. 6, 307–314 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Keigwin, L. D. Earth planet. Sci. Lett. 45, 361–382 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Hodell, D. A. & Kennett, J. P. Paleoceanography 1, 285–311 (1986).

    Article  ADS  Google Scholar 

  32. Hodell, D. A., Benson, R. H., Kennett, J. P. & Bied, K. R. Paleoceanography 4, 467–482 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerling, T., Wang, Y. & Quade, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344–345 (1993). https://doi.org/10.1038/361344a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361344a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing