Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid changes of glacial climate simulated in a coupled climate model

Abstract

Abrupt changes in climate, termed Dansgaard–Oeschger and Heinrich events, have punctuated the last glacial period (100–10 kyr ago) but not the Holocene (the past 10 kyr). Here we use an intermediate-complexity climate model to investigate the stability of glacial climate, and we find that only one mode of Atlantic Ocean circulation is stable: a cold mode with deep water formation in the Atlantic Ocean south of Iceland. However, a ‘warm’ circulation mode similar to the present-day Atlantic Ocean is only marginally unstable, and temporary transitions to this warm mode can easily be triggered. This leads to abrupt warm events in the model which share many characteristics of the observed Dansgaard–Oeschger events. For a large freshwater input (such as a large release of icebergs), the model's deep water formation is temporarily switched off, causing no strong cooling in Greenland but warming in Antarctica, as is observed for Heinrich events. Our stability analysis provides an explanation why glacial climate is much more variable than Holocene climate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stability diagrams for the Atlantic thermohaline circulation in the coupled model.
Figure 2: Modes of Atlantic thermohaline circulation in the coupled model.
Figure 3: Differences in model-simulated annual mean surface air temperature (°C).
Figure 4: Abrupt climate changes in Greenland ice-core data.
Figure 5: Simulated D/O and Heinrich events.

Similar content being viewed by others

References

  1. Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 143–152 (1988).

    Article  Google Scholar 

  2. Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218– 220 (1993).

    Article  ADS  Google Scholar 

  4. Clark, P. U., Webb, R. S. & Keigwin, L. D. Mechanisms of Global Climate Change at Millennial Time Scales (American Geophysical Union, Washington DC, 1999).

    Book  Google Scholar 

  5. Alley, R. B. & Clark, P. U. The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 ( 1999).

    Article  ADS  CAS  Google Scholar 

  6. Stocker, T. Past and future reorganisations in the climate system. Quat. Sci. Rev. 19, 301–319 ( 2000).

    Article  ADS  Google Scholar 

  7. Stocker, T. F. Abrupt climate changes: from the past to the future—a review. Int. J. Earth Sci. 88, 365–374 (1999).

    Article  CAS  Google Scholar 

  8. Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2000).

    Article  CAS  Google Scholar 

  9. Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography (in the press).

  10. Sowers, T. & Bender, M. Climate records covering the last deglaciation. Science 269, 210– 214 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Blunier, T. et al. Asynchrony of Antarctic and Greenland climate climate change during the last glacial period. Nature 394, 739–743 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Stocker, T. F. The seesaw effect. Science 282, 61– 62 (1998).

    Article  CAS  Google Scholar 

  13. Sarnthein, M. et al. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209–267 ( 1994).

    Article  ADS  Google Scholar 

  14. Keigwin, L. D., Curry, W. B., Lehman, S. J. & Johnsen, S. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323– 326 (1994).

    Article  ADS  Google Scholar 

  15. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 350– 356 (1998).

    Article  ADS  Google Scholar 

  16. Petoukhov, V. et al. CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim. Dyn. 16, 1–17 ( 2000).

    Article  Google Scholar 

  17. Ganopolski, A. et al. CLIMBER-2: A climate system model of intermediate complexity. Part II: Model sensitivity. Clim. Dyn. (in the press).

  18. Stocker, T. F. & Wright, D. G. A zonally averaged ocean model for the thermohaline circulation. Part II: Interocean circulation in the Pacific Atlantic basin system. J. Phys. Oceanogr. 21, 1725–1739 (1991).

    Article  ADS  Google Scholar 

  19. Rahmstorf, S. & Ganopolski, A. Long-term global warming scenarios computed with an efficient coupled climate model. Clim. Change 43, 353–367 ( 1999).

    Article  CAS  Google Scholar 

  20. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841– 866 (1988).

    Article  ADS  Google Scholar 

  21. Kageyama, M. et al. The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim. Dyn. 17, 23–43 (2001).

    Article  Google Scholar 

  22. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The role of vegetation-atmosphere-ocean interaction for the climate system during the mid-Holocene. Science 280, 1916–1919 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kubatzki, C., Montoya, M., Rahmstorf, S., Ganopolski, A. & Claussen, M. Comparison of a coupled global model of intermediate complexity and AOGCM for the last interglacial. Clim. Dyn. 16, 799–814 ( 2000).

    Article  Google Scholar 

  24. Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037 –2040 (1999).

    Article  ADS  Google Scholar 

  25. Brovkin, V., Ganopolski, A. & Svirezhev, Y. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Model. 101, 251–261 (1997).

    Article  Google Scholar 

  26. Claussen, M., Brovkin, V., Kubatzki, C., Ganopolski, A. & Petoukhov, V. Modelling global terrestrial vegetation-climate interaction. Phil. Trans. R. Soc. Lond. B 353, 53–63 (1998).

    Article  Google Scholar 

  27. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145 –149 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12, 799–811 (1996).

    Article  Google Scholar 

  29. Alley, R. B., Clark, P. U., Keigwin, L. D. & Webb, R. S. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 385–394 (American Geophysical Union, Washington DC, 1999).

    Book  Google Scholar 

  30. Yiou, P. et al. Paleoclimatic variability inferred from the spectral analysis of Greenland and Antarctic ice-core data. J. Geophys. Res. 102, 26441–26454 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution. J. Geophys. Res. 102, 26455 –26470 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Kreveld, S. V. et al. Potential links between surging ice sheets, circulation changes, and the Dansgaard–Oeschger cycles in the Irminger Sea, 60-18 kyr. Paleoceanography 15, 425–442 (2000).

    Article  ADS  Google Scholar 

  33. Clark, P. U., Alley, R. B. & Pollard, D. Northern hemisphere ice sheet influences on global climate change. Science 286, 1104– 1111 (1999).

    Article  CAS  Google Scholar 

  34. Paillard, D. & Cortijo, E. A simulation of the Atlantic meridional circulation during Heinrich event 4 using reconstructed sea surface temperatures and salinities. Paleoceanography 14, 716 –724 (1999).

    Article  ADS  Google Scholar 

  35. Cacho, I. et al. Dausgaard–Oeschger and Heinreich event imprints in the Alboran Sea paleotemperatures. Paleoceanography 14, 698–705 (1999).

    Article  ADS  Google Scholar 

  36. Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Stocker, T. F. & Marchal, O. Abrupt climate change in the computer: is it real? Proc. Nat. Acad. Sci. USA 97, 1362–1365 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).

    Article  ADS  Google Scholar 

  39. Manabe, S. & Stouffer, R. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997).

    Article  ADS  Google Scholar 

  40. Fanning, A. F. & Weaver, A. J. Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas. Paleoceanography 12, 307– 320 (1997).

    Article  ADS  Google Scholar 

  41. Marchal, O., Stocker, T. F. & Joos, F. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 263–284 (American Geophysical Union, Washington DC, 1999).

    Book  Google Scholar 

  42. Van Geel, B. et al. The role of solar forcing upon climate change. Quat. Sci. Rev. 18, 331–338 (1999).

    Article  ADS  Google Scholar 

  43. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Bond, G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257– 1266 (1997).

    Article  ADS  CAS  Google Scholar 

  45. Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).

    Article  ADS  Google Scholar 

  46. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  47. Dahl-Jensen, D. et al. Past temperatures directly from the Greenland Ice Sheet. Science 282, 268–279 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ganopolski.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganopolski, A., Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model . Nature 409, 153–158 (2001). https://doi.org/10.1038/35051500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing