Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores

Abstract

THE Younger Dryas, an approximately 1,000-year-long return to near-glacial conditions, interrupted the glacial/Holocene climate transition during which most of the Northern Hemisphere ice sheets melted. Evidence for the Younger Dryas event has been found mainly in sediments from the North Atlantic Ocean and northwest Europe, and this has led to the idea that the event was caused by an injection of meltwater into the North Atlantic Ocean1–3. This model, however, has been recently questioned in the light of coral-reef data on the rate of sea level changes during this transition4. Here we present high-resolution oxygen isotope records from benthic and planktonic foraminifera from two radiocarbon-dated cores in the Sulu Sea, showing that the Younger Dry as occurred synchronously in the surface and deep waters of the Sulu Sea and the northern Atlantic Ocean. By combining our results with other palaeoclimate data, we suggest that the Younger Dry as event was a global phenomenon, and we believe it to have been caused by low atmospheric CO2concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

    Article  ADS  Google Scholar 

  2. Broecker, W. S. et al. Nature 333, 156–158 (1988).

    Article  ADS  Google Scholar 

  3. Overpeck, J. T. et al. Nature 338, 553–557 (1989).

    Article  ADS  Google Scholar 

  4. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  5. Duplessy, J.-C. et al. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 121–144 (1981).

    Article  CAS  Google Scholar 

  6. Ruddiman, W. F. & Duplessy, J.-C. Quat. Res. 23, 1–17 (1985).

    Article  Google Scholar 

  7. Berger, W. H. Episodes 8, 163–168 (1985).

    Google Scholar 

  8. Dansgaard, W. et al. Nature 339, 532–534 (1989).

    Article  ADS  Google Scholar 

  9. Jansen, E. & Veum, T. Nature 343, 612–616 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Sarnthein, M. & Tiedemann, R. Paleoceanography 5, 1041–1055 (1990).

    Article  ADS  Google Scholar 

  11. Bard, E. et al. Nature 328, 791–794 (1987).

    Article  ADS  Google Scholar 

  12. Kennett, J. P. et al. Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 189–216 (1985).

    Article  Google Scholar 

  13. Wyrtki, K. NAGA-Report No. 2 (Univ. California, La Jolla, 1961).

  14. Quadfasel, D., Kudrass, H. R. & Frische, A. Nature 348, 320–322 (1990).

    Article  ADS  Google Scholar 

  15. Linsley, B. K. et al. Mar. Micropaleont. 9, 395–418 (1985).

    Article  ADS  Google Scholar 

  16. Vollbrecht, R. & Kudrass, H. R. in Proc. 0DP, Init. Rep. 124 (eds Rangin, C. et al.) 105–111 (Ocean Drilling Program, College Station, 1990).

    Google Scholar 

  17. Exon, N, F. et al. Mar. Geol. 39, 165–195 (1981).

    Article  ADS  Google Scholar 

  18. Jelen, K. & Geyh, M. A. Radiocarbon 28, 578–585 (1986).

    Article  CAS  Google Scholar 

  19. Wang, L. & Wang, P. Paleoceanography 5, 77–90 (1990).

    Article  ADS  Google Scholar 

  20. Linsley, B. K. & Thunell, R. C. Paleoceanography 5, 1025–1039 (1990).

    Article  ADS  Google Scholar 

  21. Kallel, N. et al. Oceanolog. Acta 11, 369–375 (1988).

    Google Scholar 

  22. Heusser, C. J. & Rabassa, J. Nature 328, 609–611 (1989).

    Article  ADS  Google Scholar 

  23. Pastouret, L. Oceanolog. Acta 1, 217–232 (1985).

    Google Scholar 

  24. Sarnthein, M., Erlenkeuser, H. & Zahn, R. Bull. Inst. Geol. Bassin d' Aquitaine 31, 393–407 (1982).

    Google Scholar 

  25. Duplessy, J.-C. et al. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 9–46 (1981).

    Article  Google Scholar 

  26. Dansgaard, W. et al. Science 218, 1273–1277 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Jouzel, J. et al. Nature 329, 403–408 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Emiliani, C., Rooth, C. & Stipp, J. J. Earth planet. Sci. Lett. 41, 159–162 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Jansen, E. & Erlenkeuser, H. Palaeogeogr. Palaeoclimatol. Palaeoecol. 49, 189–206 (1985).

    Article  Google Scholar 

  30. Dean, W. E. et al. Paleoceanography 4, 639–653 (1989).

    Article  ADS  Google Scholar 

  31. Barnola, J. M. et al. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudrass, H., Erlenkeuser, H., Vollbrecht, R. et al. Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature 349, 406–409 (1991). https://doi.org/10.1038/349406a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349406a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing