Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific

Abstract

Historically the deep sea was viewed as a homogeneous environment in time and space characterized by high hydrostatic pressure, low temperature and low food supply1,2. The highly diverse but low-density communities of organisms3,4 occupying this environment were dependent on a slow, constant rain of small participate organic matter from the overlying surface water for food. This material slowly settled through thousands of metres of the water column, dampening any pulses in primary production at the surface. The rate at which this ‘constant’ food source was used was found to be slow5–8. However, there was early evidence9–12, with much recent support13–17, that some deep-sea animals exhibited seasonal reproduction. In addition, the flux of small particulate organic matter to the deep-sea floor has been shown to be seasonal and in phase with rates of surface primary productivity18–20. We report here the first evidence of seasonality in biological rates in the deep sea: in situ rates of sediment community oxygen consumption at two abyssal stations in the central and eastern North Pacific are highest in early summer, decreasing to the lowest rates in late autumn and winter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bruun, A. F. Mem. geol. Soc. Am. 67, 641–672 (1957).

    Google Scholar 

  2. Menzies, R. J. Oceanogr. mar. Biol. A. Rev. 3, 195–210 (1965).

    Google Scholar 

  3. Sanders, H. L., Hessler, R. R. & Hampson, G. R. Deep Sea Res. 12, 845–867 (1965).

    Google Scholar 

  4. Hessler, R. R. & Sanders, H. L. Deep Sea Res. 14, 65–78 (1967).

    Google Scholar 

  5. Jannasch, H. W., Eimhjellen, K., Wirsen, C. O. & Farmanfarmian, A. Science 171, 672–675 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Jannasch, H. W. & Wirsen, C. O. Science 180, 641–643 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Smith, K. L. Jr & Teal, J. M. Science 179, 853–858 (1973).

    Google Scholar 

  8. Turekian, K. K. et al. Proc. natn. Acad. Sci. U.S.A. 72, 2829–2833 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Mead, G. W., Bertelsen, E. & Cohen, D. Deep Sea Res. 11, 569–596 (1964).

    Google Scholar 

  10. George, R. Y. & Menzies, R. J. Nature 215, 878 (1967).

    Article  ADS  Google Scholar 

  11. George, R. Y. & Menzies, R. J. Nature 220, 80–81 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Schoener, A. Ecology 49, 81–87 (1968).

    Article  Google Scholar 

  13. Rokop, F. J. Science 186, 743–745 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Rokop, F. J. Mar. Biol. 43, 237–246 (1977).

    Article  Google Scholar 

  15. Lightfoot, R. H., Tyler, P. A. & Gage, J. D. Deep Sea Res. 26A, 967–973 (1979).

    Article  ADS  Google Scholar 

  16. Tyler, P. A., Grant, A., Pain, S. L. & Gage, J. D. Nature 300, 747–750 (1982).

    Article  ADS  Google Scholar 

  17. Gage, J. D. Deep Sea Res. 29, 1565–1586 (1982).

    Article  ADS  Google Scholar 

  18. Deuser, W. G. & Ross, E. H. Nature 283, 364–365 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Honjo, S. Science 218, 883–884 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C. Nature 302, 520–522 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Smith, K. L. Jr, White, G. A. & Laver, M. B. Deep Sea Res. 26A, 337–346 (1979).

    Article  ADS  Google Scholar 

  22. Smith, K. L. Jr & Baldwin, R. J. in Handbook on Polarographic Oxygen Sensors (eds Gnaiger, E. & Forstner, H.) 298–319 (Springer, Berlin, (1983).

    Book  Google Scholar 

  23. Smith, K. L. Jr & Laver, M. B. Limnol. Oceanogr. (submitted).

  24. Smith, K. L. Jr, Laver, M. B. & Brown, N. O. Limnol. Oceanogr. 28, 882–898 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Smith, K. L. Jr, Limnol. Oceanogr. 19, 939–944 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Smith, K. L. Jr, Mar. Biol. 47, 337–347 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Hinga, K. R., Sieburth, J. McN., & Heath, G. R. J. mar. Res. 37, 557–579 (1979).

    CAS  Google Scholar 

  28. Murray, J. M. & Grundmanis, V. Science 209, 1527–1530 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Dayton, P. K. & Hessler, R. R. Deep Sea Res. 19, 199–208 (1972).

    Google Scholar 

  30. Deuser, W. G., Ross, E. H. & Anderson, R. F. Deep Sea Res. 28A, 495–505 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Smith, P. E. & Eppley, R. W. Limnol. Oceanogr. 27, 1–17 (1982).

    Article  ADS  Google Scholar 

  32. McGowan, J. A. in Biology of the Oceanic Pacific (ed. Miller, C. B.) 9–28 (Oregon State University, Corvallis, (1974).

    Google Scholar 

  33. Hayward, T. L., Venrick, E. L. & McGowan, J. A. J. mar. Res. 41, 711–729 (1983).

    Article  Google Scholar 

  34. Schulenberger, E. & Reid, J. L. Deep Sea Res. 28A, 901–919 (1981).

    Article  ADS  Google Scholar 

  35. Komar, P. D., Morse, A. P., Small, L. F. & Fowler, S. W. Limnol. Oceanogr. 26, 172–180 (1981).

    Article  ADS  Google Scholar 

  36. Robison, B. H. & Bailey, T. G. Mar. Biol. 65, 135–142 (1981).

    Article  Google Scholar 

  37. Stockton, W. L. & DeLaca, T. E. Deep Sea Res. 29A, 157–169 (1982).

    Article  ADS  Google Scholar 

  38. McGary, J. W., Graham, J. J. & Otsu, T. Calif. Coop., Oceanic Fish. Invest. Rep. 8, 45–53 (1961).

    Google Scholar 

  39. Laurs, R. M. & Lynn, R. J. Fish. Bull. 75, 795–822 (1977).

    Google Scholar 

  40. Zobell, C. E. Nova Hedwigia 32, 269–318 (1971).

    Google Scholar 

  41. Williams, P. M., Carlucci, A. F. & Olson, R. Oceanol. Acta 3, 471–476 (1980).

    Google Scholar 

  42. Williams, P. M., Stenhouse, M. C., Druffel, E. M. & Koide, M. Nature 276, 698–701 (1978).

    Article  ADS  CAS  Google Scholar 

  43. McGowan, J. A. & Williams, P. M. J. exp. Mar. Biol. Ecol. 12, 187–217 (1973).

    Article  Google Scholar 

  44. Dickson, R. R., Gould, W. J., Gurbutt, P. D. & Killworth, P. D. Nature 295, 193–198 (1982).

    Article  ADS  Google Scholar 

  45. Gardner, W. D. & Sullivan, L. G. Science 213, 329–331 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Baldwin, R. Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307, 624–626 (1984). https://doi.org/10.1038/307624a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307624a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing