Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital modulation of the Earth's magnetic field intensity

Abstract

More than 20 years ago, on the basis of data from a Pacific sediment core, it was suggested that geomagnetic field intensity may vary with the Earth's orbital obliquity (centred on a period of 41 kyr) as a result of the effect of obliquity on precessional forces in the Earth's core1. It had also been proposed that precession plays an important role in the energy budget of the Earth's geodynamo2. But subsequent analyses indicated that the energy available from precession is at least an order of magnitude less than that required to drive the geodynamo3. Here, however, we report a spectral analysis of sedimentary records of relative geomagnetic palaeointensity from two North Atlantic sites which shows significant power both at orbital eccentricity (100 kyr) and obliquity (41 kyr). The eccentricity power is also present in bulk magnetic properties (such as susceptibility) and is therefore attributable to lithological variations controlled by eccentricity-driven climate change. The obliquity power, however, is not apparent in bulk magnetic properties, and seems to be a property of the geomagnetic field itself, thus providing evidence for the orbital forcing of geomagnetic field intensity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site 983: relative geomagnetic palaeointensity proxy (mean NRM/IRM), the palaeointensity normalizer (IRM), planktic and benthic oxygen isotopes and filtered percentage CaCO3.
Figure 2: Site 984: relative geomagnetic palaeointensity proxy (mean NRM/IRM), the palaeointensity normalizer (IRM), and planktic and benthic oxygen-isotope data.
Figure 3: Site 983: rock magnetic data indicating fine-grained magnetite as the dominant magnetic mineral.
Figure 4: Power spectra and coherence analysis for various magnetic parameters, and percentage CaCO3 using AnalySeries software30 and the Blackman Tukey method31,32 with a Bartlett window.

Similar content being viewed by others

References

  1. Kent, D. V. & Opdyke, N. Palaeomagnetic field intensity variations recorded in a Brunhes epoch deep-sea sediment core. Nature 266, 156–159 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Malkus, W. V. R. Precession of the Earth as a cause of geomagnetism. Science 160, 259–264 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Rochester, M. G., Jacobs, J. A., Smylie, D. E. & Chong, K. F. Can precession power the geomagnetic dynamo? Geophys. J. R. Astron. Soc. 43, 661–678 (1975).

    Article  ADS  Google Scholar 

  4. Meynadier, L., Valet, J. P., Weeks, R., Shackleton, N. J. & Hagee, V. L. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57 (1992).

    Article  ADS  Google Scholar 

  5. Tauxe, L. & Wu, G. Normalized remanence in sediments of the western equatorial Pacific, relative paleointensity of the geomagnetic field? J. Geophys. Res. 95, 12337–12350 (1990).

    Article  ADS  Google Scholar 

  6. Tauxe, L. & Shackleton, N. J. Relative paleointensity records from the Ontong-Java plateau. Geophys. J. Int. 117, 769–782 (1994).

    Article  ADS  Google Scholar 

  7. Tauxe, L. & Hartl, P. 11 million years of Oligocene geomagnetic field behaviour. Geophys. J. Int. 128, 217–229 (1997).

    Article  ADS  Google Scholar 

  8. Shipboard Scientific Party. Site 983. Proc. ODP Init. Rep.162, 139–167 (1996).

  9. Shipboard Scientific Party. Site 984. Proc. ODP Init. Rep.162, 169–222 (1996).

  10. Hagelberg, T., Shackleton, N. J., Pisias, N. & Shipboard Scientific Party. Development of composite depth sections for Sites 844 through 854. Proc. ODP Init. Rep. 138, 79–85 (1992).

  11. Tauxe, L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354 (1993).

    Article  ADS  Google Scholar 

  12. Channell, J. E. T., Hodell, D. A. & Lehman, B. Relative geomagnetic paleointensity and δ18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 153, 103–118 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Dunlop, D. J. Magnetic mineralogy of unheated and heated red sediments by coercivity spectrum analysis. Geophys. J. R. Astron. Soc. 27, 37–55 (1972).

    Article  ADS  Google Scholar 

  14. Lowrie, W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17, 159–162 (1990).

    Article  ADS  Google Scholar 

  15. Day, R., Fuller, M. & Schmidt, V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977).

    Article  ADS  Google Scholar 

  16. King, J. W., Banerjee, S. K. & Marvin, J. Anew rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J. Geophys. Res. 88, 5911–5921 (1983).

    Article  ADS  Google Scholar 

  17. Tauxe, L., LaBrecque, J. L., Dodson, R. & Fuller, M. U-channels — a new technique for paleomagnetic analysis of hydraulic piston cores. Eos 64, 219 (1983).

    Google Scholar 

  18. Weeks, R.et al. Improvements in long-core measurement techniques: applications in palaeomagnetism and palaeoceanography. Geophys. J. Int. 114, 651–662 (1993).

    Article  ADS  Google Scholar 

  19. Stoner, J. S., Channell, J. E. T. & Hillaire-Marcel, C. Late Pleistocene relative geomagnetic paleointensity from the the deep Labrador Sea: regional and global correlations. Earth Planet. Sci. Lett. 134, 237–252 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Schneider, D. A. An estimate of late Pleistocene geomagnetic intensity variation from Sulu Sea sediments. Earth Planet. Sci. Lett. 120, 301–310 (1994).

    Article  ADS  Google Scholar 

  21. Valet, J. P. & Meynadier, L. Geomagnetic field intensity and reversals during the past four million years. Nature 366, 234–238 (1993).

    Article  ADS  Google Scholar 

  22. Martinson, D. G.et al. Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  23. Imbrie, J.et al. in Milankovitch and Climate (eds Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 269–305 (NATO ASI Ser. 126, Riedel, Hingham, MA, (1984)).

    Google Scholar 

  24. Imbrie, J. & Imbrie, J. Z. Modeling the climate response to orbital variations. Science 207, 943–953 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Pisias, N. G., Mix, A. C. & Zahn, R. Nonlinear response in the global climate system: evidence from benthic oxygen isotopic record in Core RC13-110. Paleoceanography 5, 147–160 (1990).

    Article  ADS  Google Scholar 

  26. Shackleton, N. J., Berger, A. & Peltier, W. R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinb. Earth Sci. 81, 251–261 (1990).

    Article  Google Scholar 

  27. Vidal, L.et al. Evidence for changes in the North Atlantic deep water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Berger, A. Long-term variations of daily insolation and Quaternary climatic change. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  29. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  ADS  Google Scholar 

  30. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

  31. Blackman, R. B. & Tukey, J. W. The Measurement of Power Spectra from the Point of View of Communication Engineering (Dover, New York, (1958)).

    Book  Google Scholar 

  32. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden-Day, Oakland, CA, (1968)).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank C. Laj, C. Kissel and A. Mazaud for logistic support and discussions; and J.S. Stoner and J. D. Ortiz for comments on the manuscript. The paleomagnetic laboratory at Gif-sur-Yvette is supported by CEA and CNRS. At the University of Florida, this project was supported by the US Science Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. T. Channell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Channell, J., Hodell, D., McManus, J. et al. Orbital modulation of the Earth's magnetic field intensity. Nature 394, 464–468 (1998). https://doi.org/10.1038/28833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28833

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing