Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure

Abstract

Satellite imagery and large-scale oceanic experiments have replaced traditional concepts of broad sluggish currents moving throughout the ocean by the concept of a continuous distribution of more energetic eddies, the dominant eddies having space scales1,2 of the order of 100 km. Near the ocean boundaries in such areas as the Gulf Stream and the California Current, these eddies exhibit strong thermal contrast, of the order of 2–6 °C, and their structure and distribution can be mapped using satellite thermal IR imagery3,4. Over most of the ocean, however, the thermal contrasts are much lower, of the order of 0.1–0.5 °C, and tend to be masked from satellite observation by small-scale atmospheric variations. To map the structure associated with mesoscale horizontal water motions in these areas, another indicator must be used for observation from space. We present here the first results of spectral analysis of satellite imagery of what we believe is phytoplankton patchiness controlled by mesoscale (10–100 km) water motions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bernstein, R. L. & White, W. B. J. phys. Oceanogr. 4, 613 (1974).

    Article  ADS  Google Scholar 

  2. Gould, J., Schmitz, W. J. & Wunsch, C. Deep-Sea Res. 21, 911 (1974).

    Google Scholar 

  3. Legeckis, R. V. J. phys. Oceanogr. 9, 483 (1979).

    Article  ADS  Google Scholar 

  4. Bernstein, R. L., Breaker, L. & Whritner, R. Science 195, 353 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Smayda, T. J. Oceanogr. mar. Biol. A. Rev. 8, 353 (1970).

    Google Scholar 

  6. Eppley, R. W. Fish Bull. U.S. 70, 1063 (1972).

    Google Scholar 

  7. Denman, K. L. & Platt, T. J. mar. Res. 34, 593 (1976).

    Google Scholar 

  8. Denman, K. L., Okubo, A. & Platt, T. Limnol. Oceanogr. 22, 1033 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Fasham, M. J. Oceanogr. mar. Biol. A. Rev. 16, 43 (1978).

    Google Scholar 

  10. Horwood, J. W. J. mar. Biol. Ass. U.K. 58, 487 (1978).

    Article  MathSciNet  Google Scholar 

  11. Yentsch, C. S. Deep-Sea Res. 7, 1 (1960).

    ADS  Google Scholar 

  12. Clarke, G. L., Ewing, G. C. & Lorenzen, C. J. Science 167, 1119 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Morel, A. & Prieur, L. Limnol. Oceanogr. 22, 709 (1977).

    Article  ADS  Google Scholar 

  14. Gower, J. F. R. Boundary Layer Met. 18, 235 (1980).

    Article  ADS  Google Scholar 

  15. Smith, R. C. & Baker, K. S. Limnol. Oceanogr. 23, 247 (1978).

    Article  ADS  Google Scholar 

  16. Fruigeirssin, E., Einarrson, S., Olafsson, J. & Thordandottir, T. International Council for the Exploration of the Sea, Early Life History of Fish Symp. (Woods Hole, 1979).

    Google Scholar 

  17. Kiefer, D. A., Olson, R. J. & Wilson, W. H. Limnol. Oceanogr. 24, 664 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Saunders, P. M. Deep-Sea Res. 19, 467 (1972).

    Google Scholar 

  19. Holladay, C. G. & O'Brien, J. J. J. phys. Oceanogr. 5, 761 (1975).

    Article  ADS  Google Scholar 

  20. Gordon, H. R. & Clark, D. K. Boundary Layer Met. 18, 299 (1980).

    Article  ADS  Google Scholar 

  21. Denman, K. L. & Platt, T. Mem. Soc. r. Sci. Liège 7, 19 (1975).

    Google Scholar 

  22. Denman, K. L. Deep-Sea Res. 23, 539 (1976).

    Google Scholar 

  23. Fasham, M. J. & Pugh, P. R. Deep-Sea Res. 23, 527 (1976).

    Google Scholar 

  24. Kraichnan, R. H. Phys. Fluids 10, 1417 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  25. Charney, J. G. J. atmos. Sci. 28, 1087 (1971).

    Article  ADS  Google Scholar 

  26. Phillips, O. M. J. phys. Oceanogr. 1, 1 (1971).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gower, J., Denman, K. & Holyer, R. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157–159 (1980). https://doi.org/10.1038/288157a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288157a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing