Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times

Abstract

Marine carbonates and organic matter show a sharp increase in their 13C/12C isotope ratio at the Cenomanian/Turonian (C/T) boundary1,2 in the Cretaceous period. This isotopic shift resulted from an increase in the rate of sedimentary burial of 13C-depleted organic carbon in response to the C/T ‘oceanic anoxic event’2. Theenhanced burial rate should have led to a significant drop inthe atmospheric CO2 concentration, which could explain the apparent climate cooling of early Turonian times2,3,4. Here we present stable carbon isotope data for specific compounds from terrestrial leaves and marine phytoplankton, and quantify the abruptness and magnitude of the atmospheric CO2 concentration change. Isotope shifts in leaf-wax components extracted from abyssal sediments in the northeastern tropical Atlantic Ocean—the components are wind-delivered from Africa—indicate a sudden change in plant communities of the north African continent. Specifically, the data suggest that plants using the C3-type photosynthetic pathway were succeeded by plants using the C4-type pathway. If C4plants can outcompete C3 plants only at atmospheric CO2 concentrations below 500 p.p.m.v. (ref. 5), the observed vegetation change indicates a far larger reduction in C/T CO2 concentration—some 40–80%—than previously suggested6. The isotopic excursion in the marine phytoplankton compounds is consistent with this estimate. We infer that this dramatic fall in the atmospheric CO2 concentration was abrupt, occurring in just 60,000 years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk and biomarker data from the investigated sites; the stratigraphy is also shown.
Figure 2: δ13C values of leaf lipids versus chain length.
Figure 3: The C3/C4 crossover function.

Similar content being viewed by others

References

  1. Scholle, P. A. & Arthur, M. A. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Bull. Am. Assoc. Petrol. Geol. 64, 67–87 (1980).

    CAS  Google Scholar 

  2. Arthur, M. A., Dean, W. E. & Pratt, L. M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–717 (1988).

    Article  ADS  Google Scholar 

  3. Jenkyns, H. C., Gale, A. S. & Corfield, R. M. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag. 131, 1–34 (1994).

    Article  ADS  Google Scholar 

  4. Kuhnt, W.et al. Oceanic anoxic conditions around the Cenomanian/Turonian Boundary and the response of the biota. Mitt. Geol.-Paläont. Inst. Univ. Hamburg SCOPE/UNEP 60, 205–246 (1986).

    Google Scholar 

  5. Cerling, T. E.et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Barron, E. J. Awarm, equable Cretaceous: The nature of the problem. Earth Sci. Rev. 19, 305–338 (1983).

    Article  ADS  Google Scholar 

  8. Arthur, M. A., Dean, W. E. & Schlanger, S. O. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–530 (Monogr. 32, Am. Geophys. Un., Washington DC, (1985).

    Google Scholar 

  9. Larson, R. L. Geological consequences of superplumes. Geology 19, 963–966 (1991).

    Article  ADS  Google Scholar 

  10. Berner, R. A. Palaeo-CO2and climate. Nature 358, 114 (1992).

    Article  ADS  Google Scholar 

  11. Mélières, F. X-ray mineralogy studies, leg 41, Deep Sea Drilling Project, Eastern North Atlantic Ocean. Init. Rep. DSDP 41, 1065–1086 (1978).

    Google Scholar 

  12. Herbin, J. P.et al. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 389–422 (Spec. Publ. 21, Geol. Soc., London, (1986).

    Google Scholar 

  13. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967).

    Article  ADS  CAS  Google Scholar 

  14. Gagosian, R. B., Peltzer, E. T. & Zafiriou, O. C. Atmospheric transport of continentally derived lipids to the tropical North Pacific. Nature 291, 312–314 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Farrington, J. W. & Tripp, B. W. Hydrocarbons in western North Atlantic surface sediments. Geochim. Cosmochim. Acta. 41, 1627–1641 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Kohnen, M. E. L., Sinninghe Damsté, J. S. & De Leeuw, J. W. Biases from natural sulphurization in palaeoenvironmental reconstruction based on hydrocarbon biomarker distributions. Nature 349, 775–778 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  18. White, J. W., Ciais, P., Figge, R. A., Kenny, R. & Markgraf, V. Ahigh-resolution record of atmospheric CO2content from carbon isotopes in peat. Nature 367, 153–156 (1994).

    Article  CAS  Google Scholar 

  19. Street-Perrott, F. A.et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, 1422–1426 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Collister, J. W.et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org. Geochem. 21, 619–627 (1994).

    Article  CAS  Google Scholar 

  21. Rieley, G.et al. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352, 425–427 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Spicer, R. A. Physiological characteristics of land plants in the relation to environment through time. Trans. R. Soc. Edinb. Earth Sci. 80, 321–329 (1989).

    Article  Google Scholar 

  23. Bocherens, H.et al. Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants: Palaeoecological implications. Lethaia 26, 347–358 (1993).

    Article  Google Scholar 

  24. Wright, V. P. & Vanstone, S. D. Assessing the carbon dioxide content of ancient atmospheres using palaeocalcretes: theoretical and empirical constraints. J. Geol. Soc. 148, 945–947 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article  ADS  Google Scholar 

  26. Collatz, J. S., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2partial pressure on the global distribution of C4grasses: present, past, and future. Oecologia 114, 441–454 (1998).

    Article  ADS  Google Scholar 

  27. Sellwood, B. W., Price, G. D. & Valdes, P. J. Cooler estimates of Cretaceous temperatures. Nature 370, 453–455 (1994).

    Article  ADS  Google Scholar 

  28. Bird, M. I. & Cali, J. A. Amillion-year record of fire in sub-Saharan Africa. Nature 394, 767–769 (1998).

    Article  ADS  Google Scholar 

  29. Hayes, J. M., Popp, B. N., Takigiku, R. & Johnson, M. W. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochim. Cosmochim. Acta 53, 2961–2972 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Gale, A. S.et al. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian Turonian boundary. J. Geol. Soc. Lond. 150, 29–32 (1993).

    Article  Google Scholar 

  31. Kuhnt, W., Nederbragt, A. & Leine, L. Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cret. Res. 18, 587–601 (1997).

    Article  Google Scholar 

  32. Kuhnt, W., Herbin, J. P., Thurow, J. & Wiedmann, J. in Deposition of Organic Facies (ed. Huc, A. Y.) 133–160 (Studies in Geology 30, Am. Assoc. Petrol. Geol., Tulsa, (1990).

    Google Scholar 

Download references

Acknowledgements

We thank A. Boom and M. Sephton for discussions; J. Köster, R. Kloosterhuis, P.Slootweg, M. Dekker, W. Pool, M. Baas, W. I. C. Rijpstra and W. Reints for analytical assistance; and theOcean Drilling Program and W. Kuhnt for providing the samples. The investigations were supported by the Research Council for Earth and Lifesciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. M. Kuypers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuypers, M., Pancost, R. & Damsté, J. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399, 342–345 (1999). https://doi.org/10.1038/20659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20659

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing