Skip to main content
Log in

Grazer-induced changes in the desmid Staurastrum

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In aquatic environments, predator kairomones have been shown to affect morphology of prey species. Past work on the interaction between zooplankton and phytoplankton was based mainly on the Daphnia–Scenedesmus model. Algae of the genus Staurastrum can produce mucilage, causing cell clumping and settling out of the water column. These clumps are too large to be eaten by daphniids. Thus, we hypothesised that this may be a grazer defence. We investigated whether Daphnia magna induces the formation of mucus globules in Staurastrum, how this occurs, and if the formation of clumps inhibits growth in juvenile Daphnia. Eight strains of Staurastrum were used to check whether mucus extrusion is induced by the presence of Daphniaor possibly by a chemical excreted by Daphnia magna. None of the strains reacted to the presence of Daphnia water alone, animals had to be present to induce clumping. Mechanical action (gentle stirring) caused the same strains to clump. The ecological relevance of clumping was then investigated. The different Staurastrum strains were used as food in a growth experiment with ecologically relevant densities of neonates of Daphnia hyalina. These small daphniids did not cause the same clumping observed for Daphnia magna when present in experiments at high densities. We observed that juvenile daphniids grew less well on strains with larger cell size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boeing, W. J., A. Wagner, H. Voigt, T. Deppe & J. Benndorf, 1998. Phytoplankton responses to grazing by Daphnia galeata in the biomanipulated Bautzen reservoir. Hydrobiologia 398: 101-114.

    Google Scholar 

  • Coesel, P. F. M., 1997. The edibility of Staurastrum chaetoceras and Cosmarium abbreviatum (desmidiaceae) for Daphnia galeata/hyalina and the role of desmids in the aquatic foodweb. Aquat. Ecol. 31: 73-78.

    Google Scholar 

  • Fukami K., S. Ohara & Y. Ishida, 1990. Effect of extracellular organic carbon from phytoplankton on the community structure of oligotrophic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34: 43-48.

    Google Scholar 

  • Gliwicz, Z. M., P. Dawidowicz, A. Jachner & W. Lampert, 2001. Roach habitat shifts and foraging modified by alarm substance - 2. Reasons for different responses of fish in field and laboratory studies. Arch. Hydrobiol. 150: 377-392.

    Google Scholar 

  • Hansson L. A. & L. J. Tranvik, 1996. Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia 108: 542-551.

    Google Scholar 

  • Harvell, C. D., 1990. The ecology and evolution of inducible defenses. Quart. Rev. Biol. 65: 323-340.

    PubMed  Google Scholar 

  • Havel, J. E., 1987. Predator-induced defenses: a review. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press, New England, Hanover: 263-278.

    Google Scholar 

  • Hessen, D. O. & E. van Donk, 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch. Hydrobiol. 127: 129-140.

    Google Scholar 

  • Kusch, J., 1993. Induction of defensive morphological changes in ciliates. Oecologia 94: 571-575.

    Google Scholar 

  • Lampert, W., K. O. Rothhaupt & E. von Elert, 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39: 1543-1550.

    Google Scholar 

  • Larsson, P. & S. I. Dodson, 1993. Chemical communication in planktonic animals. Arch. Hydrobiol. 129: 129-155.

    Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221-239.

    Google Scholar 

  • Lüning, J., 1995. Life-history responses to Chaoborus of spined and unspined Daphnia pulex. J. Plankton Res. 17: 71-84.

    Google Scholar 

  • Lürling, M., 1999a. Grazer-induced coenobial formation in clonal cultures of Scenendesmus obliquus (Chlorococcales, Chlorophyceae). J. Phycol. 35: 19-23.

    Google Scholar 

  • Lürling, M., 1999b. The smell of water; Grazer-induced colony formation in Scenedesmus. Ph.D., Agricultural University, Wageningen: 270 pp.

    Google Scholar 

  • Lürling, M. & E. van Donk, 1996. Zooplankton-induced unicellcolony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia 108: 432-437.

    Google Scholar 

  • Nilsson, P. A., C. Brönmark & L. B. Pettersson, 1995. Benefits of a predator-induced morphology in crucian carp. Oecologia 104: 291-296.

    Google Scholar 

  • Porter, K. G., 1976. Enhancement of algal growth and productivity by grazing zooplankton. Science 192: 1332-1334.

    Google Scholar 

  • Reede, T., 1995. Life history shifts in response to different levels of fish kairomones in Daphnia. J. Plankton Res. 17: 1661-1667.

    Google Scholar 

  • Rengefors, K., I. Karlsson & L. A. Hansson, 1998. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. Lond. Ser. B 265: 1353-1358.

    Google Scholar 

  • Scharf, W., 1995. Staurastrum quadridentatum spec.nov. (chlorophyta, Desmidiaceae): A new desmid species from the plankton. Arch. Hydrobiol. Suppl. 109: 1-10.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Defenses of planktonic rotifers against predators. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press, New England, Hanover: 227-239.

    Google Scholar 

  • Stibor, H., 1992. Predator-induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162-165.

    Google Scholar 

  • Smetacek, V., 2001. A watery arms race. Nature 411: 745.

    PubMed  Google Scholar 

  • Surek, B., 1983. Mucilage regeneration in the green alga Cosmocladium saxonicum de Bary (Desmidiaceae): A light microscopic and quantitative study. Brit. Phycol. J. 18: 73-81.

    Google Scholar 

  • Surek, B. & P. von Sengbusch, 1981. The localisation of Galactosyl residues and Lectin receptors in the mucilage and cell walls of Cosmocladium saxonicum (Desmidiaceae) by means of fluorescent probes. Protoplasma 108: 149-161.

    Google Scholar 

  • Tollrian, R., 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691-1705.

    Google Scholar 

  • Tollrian, R. & C. D. Harvell (ed.). 1999. The Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • van Holthoon, F. L., T. A. van Beek, M. Lürling, E. van Donk & A. de Groot, 2003. Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia 491: 241-254.

    Google Scholar 

  • von Elert, E. & A. Franck, 1999. Colony formation in Scenedesmus: grazer-mediated release and chemical features of the infochemical. J. Plankton Res. 21: 789-804.

    Google Scholar 

  • Wiltshire, K. H. & W. Lampert, 1999. Urea excretion by Daphnia: A colony-inducing factor in Scenedesmus? Limnol. Oceanogr. 44: 1894-1903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiltshire, K., Boersma, M. & Meyer, B. Grazer-induced changes in the desmid Staurastrum . Hydrobiologia 491, 255–260 (2003). https://doi.org/10.1023/A:1024474827107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024474827107

Navigation