Skip to main content
Log in

Numerical Model Approaches to Address Recent Problems on Pelagic Ecosystems

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A review of ecosystem modeling is presented, classifying the models on the basis of the problems they address. The problems are chosen mainly from those concerning the North Pacific and encompass: limiting factors in high-nutrient/low-chlorophyll (HNLC) regions; nutrient supply to the subtropical gyre; long-term variation; parameter optimization; oceanic provinces. A future research direction should be to sort out priorities of various biogeochemical and ecological processes with the long-term variation problem being the axis, while keeping the model complexity at a minimum and invoking the parameter optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, E. R., C. S. Law, P. W. Boyd, S. J. Lavender, M. T. Maldonado and A. R. Bowie (2000): Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 407, 727–730.

    Google Scholar 

  • Antoine, D., J.-M. André and A. Morel (1996): Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles, 10, 57–69.

    Google Scholar 

  • Archer, D. E. and K. Johnson (2000): A model of the iron cycle in the ocean. Glob. Biogeochem. Cycles, 14, 269–279.

    Google Scholar 

  • Armstrong, R.A. (1999a): An optimization-based model of iron-light-ammonium colimitation of nitrate uptake and phytoplankton growth. Limnol. Oceanogr., 44, 1436–1446.

    Google Scholar 

  • Armstrong, R. A. (1999b): Stable model structures for representing biogeochemical diversity and size spectra in plankton communities. J. Plankton Res., 21, 445–464.

    Google Scholar 

  • Athias, V., P. Mazzega and C. Jeandel (2000): Selecting a global optimization method to estimate the oceanic particle cycling rate constants. J. Mar. Res., 58, 675–707.

    Google Scholar 

  • Bakun, A. (1990): Global climate change and intensification of coastal ocean upwelling. Science, 247, 198–201.

    Google Scholar 

  • Banse, K. and D. C. English (1994): Seasonality of Coastal Zone Color Scanner phytoplankton pigment in the offshore oceans. J. Geophys. Res., 99, 7323–7345.

    Google Scholar 

  • Banse, K. and D. C. English (1999): Comparing phytoplankton seasonality in the eastern and western surarctic Pacific and the western Bering Sea. Prog. Oceanogr., 43, 235–287.

    Google Scholar 

  • Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway and R. J. Francey (2000): Global carbon sinks and their variability inferred from atmospheric O2 and δ 13C. Science, 287, 2467–2470.

    Google Scholar 

  • Beamish, R. J. and D. R. Bouillon (1993): Pacific salmon production trends in relation to climate. Can. J. Fish. Aquat. Sci., 50, 1002–1016.

    Google Scholar 

  • Behrenfeld, M. J. and P. G. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.

    Google Scholar 

  • Behrenfeld, M. J., A. J. Bale, Z. S. Kolber, J. Aiken and P. G. Falkowski (1996): Confirmation of iron limitation of phytoplankton phytosynthesis in the equatorial Pacific Ocean. Nature, 383, 508–511.

    Google Scholar 

  • Berger, W. H., K. Fischer, C. Lai and G. Wu (1987): Ocean productivity and orgenic carbon flux. Part I: Overview and maps of primary production and export production. SIO Reference, Univ. California, San Diego.

    Google Scholar 

  • Bidigare, R. R. and M. E. Ondrusek (1996): Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res. II, 43, 809–833.

    Google Scholar 

  • Boyd, P. W., C. S. Wong, J. Merrill, F. Whitney, J. Snow, P. J. Harrison and J. Gower (1998): Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: Is there a connection? Glob. Biogeochem. Cycles, 12, 429–441.

    Google Scholar 

  • Boyd, P. W., A. J. Watson, C. S. Law, E. R. Abraham, T. Trull, R. Murdoch, D. C. E. Bakker, A. R. Bowie, K. O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. Liddicoat, R. Ling, M. T. Maldonado, R. M. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite and J. Zeldis (2000): A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695–702.

    Google Scholar 

  • Brodeur, R. D. and D. M. Ware (1992): Long-term variability in zooplankton biomass in the subarctic pacific ocean. Fish. Oceanogr., 1, 32–38.

    Google Scholar 

  • Brzezinski, M. A. (1985): The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J. Phycol., 21, 1511–1536.

    Google Scholar 

  • Chai, F., S. T. Lindley and R. T. Barber (1996): Origin and maintenance of a high nitrate condition in the equatorial Pacific. Deep-Sea Res. II, 43, 1031–1064.

    Google Scholar 

  • Chavez, F. P. (1996): Forcing and biological impact of onset of the 1992 El Niño in central California. Geophys. Res. Lett., 23, 265–268.

    Google Scholar 

  • Chavez, F. P., P. G. Strutton and M. J. McPhaden (1998): Biological-physical coupling in the central equatorial Pacific during the onset of the 1997–98 El Niño. Geophys. Res. Lett., 25, 3543–3546.

    Google Scholar 

  • Chavez, F. P., P. G. Strutton, G. E. Friederich, R. A. Feely, G. C. Feldman, D. G. Foley and M. J. McPhaden (1999): Biological and chemical response of the equatorial Pacific Ocean to the 1997–98 El Niño. Science, 286, 2126–2131.

    Google Scholar 

  • Chisholm, S. and F. Morel (1991): What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol. Oceanogr., 36, preface.

  • Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W. P. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina and R. Kudela (1996): A massive phytoplankton bloom induced by and ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.

    Google Scholar 

  • Conversi, A. and S. Hameed (1997): Evidence for quasi-biennial oscillation in zooplankton biomass in the Subarctic Pacific. J. Geophys. Res., 102, 15,659–15,665.

    Google Scholar 

  • Conversi, A. and S. Hameed (1998): Common signals between physical and atmospheric variables and zooplankton biomass in the Subarctic Pacific. ICES. J. Marine Science, 55, 739–747.

    Google Scholar 

  • Cooper, D. J., A. J. Watson and P. D. Nightingale (1996): Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization. Nature, 383, 511–513.

    Google Scholar 

  • Dagg, M. (1993): Grazing by the copepod community does not control phytoplankton production in the subarctic Pacific Ocean. Prog. Oceanogr., 32, 163–184.

    Google Scholar 

  • Denman, K. L. and A. E. Gargett (1995): Biological-physical interactions in the upper ocean: The role of vertical and small scale transport processes. Ann. Rev. Fluid Mech., 27, 225–255.

    Google Scholar 

  • Denman, K. L. and M. A. Peña (1999): A coupled 1–D biological/physical model of the northeast subarctic Pacific Ocean with iron limitation. Deep-Sea Res. II, 46, 2877–2908.

    Google Scholar 

  • Denman, K., E. Hofmann and H. Marchant (1995): Marine biotic responses to environmental change and feedbacks to climate. p. 487–516. In Climate Change 1995, IPCC, ed. by J. H. Houghton et al., Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Doney, S. C. (1999): Major challenges confronting marine biogeochemical modeling. Glob. Biogeochem. Cycles, 13, 705–714.

    Google Scholar 

  • Doney, S. C., D. M. Glover and R. G. Najjar (1996): A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res. II, 43, 591–624.

    Google Scholar 

  • Duce, R. A. and N. W. Tindale (1991): Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr., 36, 1715–1726.

    Google Scholar 

  • Duce, R. A., P. S. Liss, J. T. Merrill, E. L. Atlas, P. Buat-Menard, B. B. Hicks, J. M. Miller, J. M. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai, R. Wollast and M. Zhou (1991): The atmospheric input of trace species to the wolrd ocean. Glob. Biogeochem. Cycles, 5, 193–259.

    Google Scholar 

  • Dugdale, R. C. and F. P. Wilkerson (1998): Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391, 270–273.

    Google Scholar 

  • Dugdale, R. C., F. P. Wilkerson and H. J. Minas (1995): The role of a silicate pump in driving new production. Deep-Sea Res., 42, 697–719.

    Google Scholar 

  • Eigenheer, A., W. Kühn and G. Radach (1996): On the sensitivity of ecosystem box model simulations on mixed-layer depth estimates. Deep-Sea Res., 43, 1011–1027.

    Google Scholar 

  • Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas and M. Landry (1997): Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.

    Google Scholar 

  • Evans, G. T. (1999): The role of local models and data sets in the Joint Global Ocean Flux Study. Deep-Sea Res., 46, 1369–1389.

    Google Scholar 

  • Evans, G. T. and J. S. Parslow (1985): A model of annual plankton cycles. Biological Oceanography, 3(2), 327–347.

    Google Scholar 

  • Falkowski, P. G., R. T. Barber and V. Smetacek (1998): Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.

    Google Scholar 

  • Fasham, M. J. R. (1995): Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis. Deep-Sea Res., 42, 1111–1149.

    Google Scholar 

  • Fasham, M. J. R. and G. T. Evans (1995): The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station at 47°N 20°W. Phil. Trans. R. Soc. Lond., 348, 203–209.

    Google Scholar 

  • Fasham, M. J. R. and G. T. Evans (2000): Advances in ecosystem modelling within JGOFS. p. 417–446. In The Changing Ocean Carbon Cycle, Chapter 15, ed. by R. B. Hanson, H. W. Ducklow and J. G. Field, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow and S. M. Mckelvie (1990): A nitrogen based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639.

    Google Scholar 

  • Finney, B. P., I. Gregory-Eaves, J. Sweetman, M. S. V. Douglas and J. P. Smol (2000): Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science, 290, 795–799.

    Google Scholar 

  • Flierl, G. R. and C. S. Davis (1993): Biological effects of gulf stream meandering. J. Mar. Res., 51, 529–560.

    Google Scholar 

  • Foley, D. G., T. D. Dickey, M. J. McPhaden, R. R. Bidigare, M. R. Lewis, R. T. Barber, S. T. Lindley, C. Garside, D. V. Manov and J. D. McNeil (1997): Longwaves and primary productivity variations in the equatorial Pacific at 0°, 140°W. Deep-Sea Res. II, 44, 1801–1826.

    Google Scholar 

  • Francis, R. C., S. R. Hare, A. B. Hollowed and W. S. Wooster (1998): Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr., 7, 1–21.

    Google Scholar 

  • Franks, P. J. S. (1995): Coupled physical-biological models in oceanography. Rev. Geophys., Supplement, 1177–1187.

    Google Scholar 

  • Friedrichs, M. A. M. and E. E. Hofmann (2001): Physical control of biological processes in the ceontral equatorial Pacific Ocean. Deep-Sea Res., 48, 1023–1069.

    Google Scholar 

  • Frost, B. W. (1987): Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods neocalanus spp. Mar. Ecol. Prog. Ser., 39, 49–68.

    Google Scholar 

  • Frost, B. W. (1993): A modelling study of processes regulating plankton standing stock and production in the open subarctic pacific ocean. Prog. Oceanogr., 32, 17–56.

    Google Scholar 

  • Frost, B. W. and M. J. Kishi (1999): Ecosystem dynamics in the eastern and western gyres of the Subarctic Pacific—a review of lower trophic level modelling. Prog. Oceanogr., 43, 317–333.

    Google Scholar 

  • Fujii, M., Y. Nojiri, Y. Yamanaka and M. J. Kishi (2001): A one-dimensional ecosystem model of time-series Station KNOT. Deep-Sea Res. II (submitted).

  • Fung, I. Y., S. K. Meyn, I. Tegen, S. C. Doney, J. G. John and J. K. B. Bishop (2000): Iron supply and demand in the upper ocean. Glob. Biogeochem. Cycles, 14, 281–295.

    Google Scholar 

  • Galloway, J. N., H. Levy, II and P. S. Kasibhatla (1994): Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio, 23, 120–123.

    Google Scholar 

  • Gao, Y., Y. J. Kaufman, D. Kolber and P. G. Falkowski (2001): Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys. Res. Lett., 28, 29–32.

    Google Scholar 

  • Garçon, V. C., A. Oschlies, S. C. Doney, D. McGillicuddy and J. Waniek (2001): The role of mesoscale variability on plankton dynamics in the North Atlantic. Deep-Sea Res. II, 48, 2199–2226.

    Google Scholar 

  • Gent, P. R. and J. C. McWilliams (1990): Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Google Scholar 

  • Gnanadesikan, A. (1999): A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution. Glob. Biogeochem. Cycles, 13, 199–220.

    Google Scholar 

  • Gruber, N. and J. L. Sarmiento (1997): Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles, 11, 235–266.

    Google Scholar 

  • Gruber, N., C. D. Keeling and T. F. Stocker (1998): Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep-Sea Res., 45, 673–717.

    Google Scholar 

  • Gunson, J., A. Oschlies and V. Garçon (1999): Sensitivity of ecosystem paramters to simulated satellite ocean color data using a coupled physical-biological model of the North Atlantic. J. Mar. Res., 57, 613–639.

    Google Scholar 

  • Haigh, S. P., K. L. Denman and W. W. Hsieh (2001): Simulation of the planktonic ecosystem response to pre-and post-1976 forcing in an isopycnic model of the North Pacific. Can. J. Fish. Aquat. Sci., 58, 703–722.

    Google Scholar 

  • Halpern, D. and G. C. Feldman (1994): Annual and interannual variations of phytoplankton pigment concentration and upwelling along the Pacific equator. J. Geophys. Res., 99, 7347–7354.

    Google Scholar 

  • Harrison, P. J., P. W. Boyd, D. E. Varela, S. Takeda, S. Shiomoto and T. Odate (1999): Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog. Oceanogr., 43, 205–234.

    Google Scholar 

  • Hood, R. R., N. R. Bates, D. G. Capone and D. B. Olson (2001): Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep-Sea Res. II, 48, 1609–1648.

    Google Scholar 

  • Hurtt, G. C. and R. A. Armstrong (1996): A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. II, 43, 653–683.

    Google Scholar 

  • Hurtt, G. C. and R. A. Armstrong (1999): A pelagic ecosystem model calibrated with BATS and OWSI data. Deep-Sea Res. II, 46, 27–61.

    Google Scholar 

  • Hutchins, D. A. and K. W. Bruland (1998): Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature, 393, 561–564.

    Google Scholar 

  • Ishizaka, J. (1990): Coupling of coastal zone color scanner data to a physical-biological model of the southeastern U. S. continental shelf ecosystem 3. nutrient and phytoplankton fluxes and czcs data assimilation. J. Geophys. Res., 95, 20,201–20,212.

    Google Scholar 

  • Johnson, K. S., R. M. Gordon and K. H. Coale (1997): What controls dissolved iron concentrations in the world ocean. Mar. Chem., 57, 137–161.

    Google Scholar 

  • Joos, F., J. L. Sarmiento and U. Siegenthaler (1991): Estimates of the effect of southern ocean iron fertilization on atmospheric CO2 concentrations. Nature, 349, 772–775.

    Google Scholar 

  • Kantha, L. H. and C. A. Clayson (2000): Small Scale Processes in Geophysical Fluid Flows. Academic Press, San Diego.

    Google Scholar 

  • Karl, D. M., R. Letelier, D. Hebel, L. Tupas, J. Dore, J. Christian and C. Winn (1995): Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño. Nature, 373, 230–234.

    Google Scholar 

  • Karl, D., R. Letelier, L. Tupas, J. Dore, J. Christian and D. Hebel (1997): The role of nitrogen fixation in biogechemical cycling in the subtropical North Pacific Ocean. Nature, 388, 533–538.

    Google Scholar 

  • Kasai, H., H. Saito, A. Yoshimori and S. Taguchi (1997): Variability in timing and magnitude of spring bloom in the Oyashio region, the western subarctic Pacific off Hokkaido, Japan. Fish. Oceanogr., 6, 118–129.

    Google Scholar 

  • Kawamiya, M. and M. J. Kishi (2001): Ecological-physical modelling for Warm-Core Ring 93A of Kuroshio extension focused on a blooming event inside WCR. J. Mar. Syst. (in press).

  • Kawamiya, M., M. J. Kishi and S. Suginohara (2000a): An ecosystem-physical combined model for the North Pacific. Part I: Model description and the characteristics of the spatial distributions of biological variables. J. Mar. Syst., 25, 129–157.

    Google Scholar 

  • Kawamiya, M., M. J. Kishi and S. Suginohara (2000b): An ecosystem-physical combined model for the North Pacific. Part II: Mechanisms of the seasonal variation of chlorophyll. J. Mar. Syst., 25, 159–178.

    Google Scholar 

  • Kimura, S., A. Kasai, H. Nakata, T. Sugimoto, J. H. Simpson and J. V. S. Cheok (1997): Biological productivity of mesoscale eddies caused by frontal disturbances in the Kuroshio. ICES. J. Marine Science, 54, 179–192.

    Google Scholar 

  • Kishi, M. J. (1994): Prediction of phytoplankton growth in a warm-core ring using three dimensional ecosystem model. J. Oceanogr., 50, 489–498.

    Google Scholar 

  • Kishi, M. J., H. Motono, M. Kashiwai and A. Tsuda (2001): An ecological-physical coupled model with ontogenetic vertical migration of zooplankton in the northwestern Pacific. J. Oceanogr., 57, 499–507.

    Google Scholar 

  • Kolber, Z. S., R. T. Berber, K. H. Coale, S. E. Fitzwater, R. M. Greene, K. S. Johnson, S. Lindley and P. G. Falkowski (1994): Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 371, 145–148.

    Google Scholar 

  • Kriest, I. (2001): Two vertically resolved models for the Arabian Sea and their correspondence with observations. Deep-Sea Res. II (submitted).

  • Kriest, I. and G. T. Evans (1999): Representing phytoplankton aggregates in biogeochemical models. Deep-Sea Res., 46, 1841–1859.

    Google Scholar 

  • Kurz, K. D. and E. Maier-Reimer (1993): Iron fertilization of the austral ocean—the Hamburg model assessment. Glob. Biogeochem. Cycles, 7(1), 229–244.

    Google Scholar 

  • Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity and J. R. White (1997): Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis. Limnol. Oceanogr., 42, 405–418.

    Google Scholar 

  • Lawson, L. M., E. E. Hofmann and Y. H. Spitz (1996): Time series sampling and data assimilation in a simple marine ecosystem model. Deep-Sea Res. II, 43, 625–651.

    Google Scholar 

  • Ledwell, J. R., A. J. Wilson and C. S. Low (1993): Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364, 701–703.

    Google Scholar 

  • Leonard, C. L. and C. R. McClain (1996): Assesment of interannual variation (1979–1986) in pigment concentrations in the tropical Pacific using the CZCS. Int. J. Remote Sensing, 17, 721–732.

    Google Scholar 

  • Leonard, C. L., C. R. McClain, R. Murtugudde, E. E. Hofmann and L. W. Harding (1999): An iron-based ecosystem model of the central equatorial Pacific. J. Geophys. Res., 104, 1325–1341.

    Google Scholar 

  • Letelier, R. M., J. E. Dore and D. M. Karl (1996): Seasonal and interannual variations in photosynthetic carbon assimilation at Station ALOHA. Deep-Sea Res. II, 43, 467–490.

    Google Scholar 

  • Longhurst, A. (1995): Seasonal cycles of pelagic production and consumption. Prog. Oceanogr., 36, 77–167.

    Google Scholar 

  • Longhurst, A. (1998): Ecological Geography of the Sea. Academic Press, San Diego.

    Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res., 17, 1245–1271.

    Google Scholar 

  • Loukos, H., B. Frost, D. E. Harrison and J. W. Murray (1997): An ecosystem model with iron limitation of primary production in the equatorial Pacific at 140°W. Deep-Sea Res. II, 44, 2221–2249.

    Google Scholar 

  • Mahadevan, A. and D. Archer (2000): Modeling the impact of fronts and mesoscle circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res., 105, 1209–1225.

    Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace and R. C. Francis (1997): A pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1078.

    Google Scholar 

  • Martin, J. H. and S. E. Fitzwater (1988): Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341–343.

    Google Scholar 

  • Martin, J. H. and R. M. Gordon (1988): Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res., 35, 177–196.

    Google Scholar 

  • Martin, J. H., K. H. Coale, K. S. Johnson, S. E. Fitzwater, R. M. Fordon, S. J. Tanner, C. N. Hunter, V. A. Elrod, J. L. Nowicki, T. L. Coley, R. T. Barber, S. Lindley, A. J. Watson, K. V. Scoy, C. S. Law, M. I. Liddicoat, R. Ling, T. Stanton, J. Stockel, C. Collins, A. A. R. Bidigare, M. Ondrusek, M. Latasa, F. J. Millero, K. Lee, W. Yao, J. Z. Zhang, G. Friederich, C. Sakamoto, F. Chavez, K. Buck, Z. Kolber, R. Greene, P. Falkowski, S. W. Chisholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Nightingale, A. Hatton, P. Liss and N. W. Tindale (1994): Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123–129.

    Google Scholar 

  • Matear, R. J. (1995): Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Sation P. J. Mar. Res., 53, 571–607.

    Google Scholar 

  • Matear, R. J. and G. Holloway (1995): Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus. Glob. Biogeochem. Cycles, 9, 101–119.

    Google Scholar 

  • McClain, C. R. and K. Arrigo (1996): Observations and simulations of physical and biological processes at Ocean Weather Station P, 1951–1980. J. Geophys. Res., 101, 3697–3713.

    Google Scholar 

  • McGillicuddy, D. J. and A. R. Robinson (1997): Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res., 44, 1427–1450.

    Google Scholar 

  • McGillicuddy, D. J., A. R. Robinson and J. J. McCarthy (1995): Coupled physical and biological modeling of the spring bloom in the North Atlantic (II): Three dimensional bloom and post-bloom processes. Deep-Sea Res., 42, 1359–1398.

    Google Scholar 

  • McGillicuddy, D. J., D. R. Lynch, A. M. Moore, W. C. Gentleman, C. S. Davis and C. J. Meise (1998a): An adjoint data assimilation approach to diagnosis of physical and biological controls on pseudocalanus spp. in the Gulf of Maine-Georges Bank region. Fish. Oceanogr., 7, 205–218.

    Google Scholar 

  • McGillicuddy, D. J., A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels and A. H. Knap (1998b): Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263–266.

    Google Scholar 

  • McGowan, J. A., D. R. Cayan and L. M. Dorman (1998): Climate-ocean variability and ecosystem response in the northeast Pacific. Science, 281, 210–217.

    Google Scholar 

  • Miller, A. J. and N. Schneider (2000): Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr., 47, 355–379.

    Google Scholar 

  • Miller, C. B., B. W. Frost, H. P. Batchelder, M. J. Clemons and R. E. Conway (1984): Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalamus cristatus, and eucalanus bungii in the norhteast Pacific. Prog. Oceanogr., 13, 201–243.

    Google Scholar 

  • Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer and T. M. Powell (1991): Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr., 36, 1600–1615.

    Google Scholar 

  • Murakami, H., J. Ishizaka and H. Kawamura (2000): ADEOS observations of chlorophyll a concentration, sea surface temperature and wind stress change in the equatorial Pacific during the 1997 El Niño onset. J. Geophys. Res., 105, 19,551–19,559.

    Google Scholar 

  • Murnane, R. J. (1994): Determination of the thorium and particulate matter cycling parameters at Station P: A reanalysis and comparison of least squares techniques. J. Geophys. Res., 99, 3393–3405.

    Google Scholar 

  • Murnane, R. J., J. K. Cochran, K. O. Buesseler and M. P. Bacon (1996): Least-squares estimates of thorium, particle, and nutrient cycling rate constants from the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res., 43, 239–258.

    Google Scholar 

  • Nitta, T. and S. Yamada (1989): Recent warming of tropical sea surface temperature and its relationship to the northern hemisphere circulation. J. Meteor. Soc. Japan, 67, 375–383.

    Google Scholar 

  • Obata, A., J. Ishizaka and M. Endoh (1996): Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20,657–20,667.

    Google Scholar 

  • Oschlies, A. and V. Garçon (1998): Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394, 266–269.

    Google Scholar 

  • Owens, N. J. P., J. N. Galloway and R. A. Duce (1992): Episodic atmospheric nirtogen deposition to oligotrphic oceans. Nature, 357, 397–399.

    Google Scholar 

  • Peng, T.-H. and W. S. Broecker (1991): Factors limiting the reduction of atmospheric CO2 by iron fertilization. Limnol. Oceanogr., 36(8), 1919–1927.

    Google Scholar 

  • Pitchford, J. W. and J. Brindley (1999): Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J. Plankton Res., 21, 525–547.

    Google Scholar 

  • Polovina, J. J., G. T. Mitchum and G. T. Evans (1995): Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep-Sea Res., 42, 1701–1716.

    Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992): Numerical Recipes in Fortran. 2nd ed., Cambridge University Press, Cambridge, 963 pp.

    Google Scholar 

  • Price, N. M., L. F. Andersen and F. M. M. Morel (1991): The equatorial Pacific Ocean: Grazer controlled phytoplankton populations in an iron-limited system. Deep-Sea Res., 38, 1361–1378.

    Google Scholar 

  • Prunet, P., J.-F. Minster, V. Echevin and I. Dadou (1996a): Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 2. adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO2 data. Glob. Biogeochem. Cycles, 10, 139–158.

    Google Scholar 

  • Prunet, P., J.-F. Minster, D. Ruiz-Pino and I. Dadou (1996b): Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 1. method and preliminary results. Glob. Biogeochem. Cycles, 10, 111–138.

    Google Scholar 

  • Roemmich, D. and J. McGowan (1995): Climatic warming and the decline of zooplankton in the California Current. Science, 267, 1324–1325.

    Google Scholar 

  • Sarmiento, J. L. and J. C. Orr (1991): Three-dimentsional simulations of the impact of southern ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr., 36(8), 1928–1950.

    Google Scholar 

  • Schartau, M., A. Oschlies and J. Willebrand (2001): Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method. Deep-Sea Res. II, 48, 1769–1800.

    Google Scholar 

  • Schwing, F. B. and R. Mendelsohn (1997): Increased coastal upwelling in the California Current system. J. Geophys. Res., 102, 12785–12786.

    Google Scholar 

  • Shiomoto, A., Y. Ishida, M. Tamaki and Y. Yamanaka (1998): Primary production and chlorophyll a in the northwestern Pacific Ocean in summer. J. Geophys. Res., 103, 24,651–24,661.

    Google Scholar 

  • Siegel, D. A., D. J. McGillicuddy and E. A. Fields (1999): Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res., 104, 13,359–13,379.

    Google Scholar 

  • Spall, S. A. and K. J. Richards (2000): A numerical model of mesoscale frontal instabilities and plankton dynamics. I. Model formulation and initial experiments. Deep-Sea Res., 47, 1261–1301.

    Google Scholar 

  • Spitz, Y. H., J. R. Moisan, M. R. Abott and J. G. Richman (1998): Data asimilation and a pelagic ecosystem model: Parameterization using time series observations. J. Mar. Syst., 16, 51–68.

    Google Scholar 

  • Spitz, Y. H., J. R. Moisan and M. R. Abott (2001): Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). Deep-Sea Res. II, 48, 1733–1768.

    Google Scholar 

  • Stoens, A., C. Menkès, M.-H. Radenac, Y. Dandonneau, N. Grima, G. Eldin, L. Mémery, C. Navarette, J.-M. André, T. Moutin and P. Raimbault (1999): The coupled physical-new production system in the equatorial Pacific during the 1992–1995 El Niño. J. Geophys. Res., 104, 3323–3339.

    Google Scholar 

  • Sugimoto, T. and K. Tadokoro (1997): Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. Fish. Oceanogr., 6, 74–93.

    Google Scholar 

  • Sugimoto, T. and K. Tadokoro (1998): Interdecadal variations of plankton biomass and physical environment in the North Pacific. Fish. Oceanogr., 7, 289–299.

    Google Scholar 

  • Takahashi, K. (1987): Response of Subarctic Pacific diatom fluxes to the 1982–83 El Niño disturbance. J. Geophys. Res., 92, 14,387–14,392.

    Google Scholar 

  • Takeda, S. (1998): Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774–777.

    Google Scholar 

  • Taniguchi, A. (1999): Differences in the structure of the lower trophic levels of pelagic ecosystems in the eastern and western subarctic Pacific. Prog. Oceanogr., 43, 289–315.

    Google Scholar 

  • Taylor, A. H., D. S. Harbour, R. P. Harris, P. H. Burkill and E. S. Edwards (1993): Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen. J. Plankton Res., 15, 875–891.

    Google Scholar 

  • Totterdell, I. J. (1993): An annoted bibliography of marine biological models. p. 317–339. In Towards a Model of Ocean Biogeochemical Processes, ed. by G. T. Evans and M. J. R. Fasham, Springer-Verlag, Berlin.

    Google Scholar 

  • Tsunogai, S. and Y. Watanabe (1983): Role of dissolved silicate in the occurence of a phytoplankton bloom. J. Oceanogr. Soc. Japan, 39, 231–239.

    Google Scholar 

  • Turner, S. M., P. D. Nightingale, L. J. Spokes, M. I. Liddicoat and P. S. Liss (1996): Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature, 383, 513–517.

    Google Scholar 

  • Vallino, J. J. (2000): Improving marine ecosystem models: Use of data assimilation and mesocosm experiments. J. Mar. Res., 58, 117–164.

    Google Scholar 

  • Venrick, E. L., J. A. McGowan, D. R. Cayan and T. L. Hayward (1987): Climate and chlorophyll a: Long-term trends in the central North Pacific Ocean. Science, 238, 70–72.

    Google Scholar 

  • Watson, A. J., C. S. Law, K. A. V. Scoy, F. J. Millero, W. Yao, G. E. F. M. I. Liddicoat, R. H. Wanninkhof, R. R. Barber and K. H. Coale (1994): Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations. Nature, 371, 143–145.

    Google Scholar 

  • Watson, A. J., D. C. E. Bakker, A. J. Ridgwell, P. W. Boyd and C. S. Law (2000): Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature, 407, 730–733.

    Google Scholar 

  • Welschmeyer, N. A., S. Storm, R. Goericke, G. DiTullio, M. Belvin and W. Petersen (1993): Primary production in the Subarctic Pacific Ocean: Project SUPER. Prog. Oceanogr., 32, 101–135.

    Google Scholar 

  • Wong, C. S. and R. J. Matear (1999): Sporadic silicate limitation of phytoplankton productivity in the subarctic NE Pacific. Deep-Sea Res. II, 46, 2539–2555.

    Google Scholar 

  • Wong, C. S., F. A. Whitney, R. J. Matear and K. Iseki (1998): Enhancement of new production in the northeast subarctic Pacific Ocean during negative North Pacific index events. Limnol. Oceanogr., 43, 1418–1426.

    Google Scholar 

  • Wong, C. S., F. A. Whitney, D. W. Crawford, K. Iseki, R. J. Matear, W. K. Johnson, J. S. Page and D. Timothy (1999): Seasonal and interannual variability in particle fluxes of carbon nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982–1993: Relationship to changes in subarctic primary productivity. Deep-Sea Res. II, 46, 2735–2760.

    Google Scholar 

  • Woods, J. D. (1988): Mesoscale upwelling and primary production. p. 7–38. In Toward a Theory on Biological-Physical Interactions in the World Ocean, ed. by B. J. Rothschild, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Yamazaki, H. and D. Kamykowski (1991): The vertical trajectories of motile phytoplankton in a wind-mixed water column. Deep-Sea Res., 38, 219–241.

    Google Scholar 

  • Yoshimori, A. and M. J. Kishi (1994): Effects of interaction between two warm-core rings on phytoplnkton distribution. Deep-Sea Res., 41, 1039–1052.

    Google Scholar 

  • Yoshimori, A., J. Ishizaka, T. Kono, H. Kasai, H. Saito, M. J. Kishi and S. Taguchi (1995): Modeling of spring bloom in the western subarctic Pacific (off Japan) with observed vertical density structure. J. Oceanogr., 51, 471–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Kawamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamiya, M. Numerical Model Approaches to Address Recent Problems on Pelagic Ecosystems. Journal of Oceanography 58, 365–378 (2002). https://doi.org/10.1023/A:1015822011358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015822011358

Navigation