Skip to main content
Log in

Middle Miocene magmatic activity in the Sophia Basin, Arctic Ocean—evidence from dredged basalt at the flanks of Mosby Seamount

  • Original Article
  • Published:
arktos

Abstract

The area to the northwest of Svalbard was repeatedly affected by tectono-magmatic events during the opening of the Arctic Ocean including the formation of the Cretaceous High Arctic Large Igneous Province, the Late Cretaceous/early Cenozoic birth of the Eurasian Basin, and the establishment of a full seafloor-spreading regime along the Lena Trough/Fram Strait in the middle Miocene. These processes also affected the Sophia Basin located between the Yermak Plateau and the northern Svalbard Shelf. In 2013 a piece of basalt was dredged from the southern flank of the Mosby Seamount, the central landmark within the Sophia Basin. According to Ar–Ar dating on fresh plagioclase the basalt erupted at ~ 13 Ma, contemporaneous with incipient seafloor spreading in the nearby Lena Trough and volcanic activity on northern Svalbard. If the dredged basalt is temporally related to sediment-covered lava flows and sill intrusions around Mosby Seamount, which were revealed by seismic reflections, then the age of the sedimentary cover must be middle Miocene or younger. This finding will improve the regional seismo-stratigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe–Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim Cosmochim Acta 63(10):1489–1505

    Article  Google Scholar 

  2. Amundsen HEF, Griffin WL, O’Reilly SY (1987) The lower crust and the upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics 139:169–185

    Article  Google Scholar 

  3. Bailey JC, Rasmussen MH (1997) Petrochemistry of Jurassic and Cretaceous tholeiites from Kong Karls Land, Svalbard, and their relation to Mesozoic magmatism in the Arctic. Polar Res 16:37–62. https://doi.org/10.1111/j.1751-8369.1997.tb00726.x

    Article  Google Scholar 

  4. Baksi AK (1999) Revaluation of plate motion models based on hotspot tracks in the Atlantic and Indian oceans. J Geol 107:13–26

    Article  Google Scholar 

  5. Baksi AK (2007) A quantitative tool for detecting alteration in undisturbed rocks and minerals—I: water, chemical weathering, and atmospheric argon. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes, vol 430. Geological Society of America Special Paper, USA, pp 285–303

    Google Scholar 

  6. Bau M, Schmidt K, Koschinsky A, Hein J, Kuhn T, Usui A (2014) Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem Geol 381:1–9

    Article  Google Scholar 

  7. Beier C, Vanderkluysen L, Regelous M, Mahoney JJ, Garbe-Schönberg D (2011) Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem Geophys Geosyst. https://doi.org/10.1029/2011gc003690

    Google Scholar 

  8. Berglar K, Franke D, Lutz R, Schreckenberger B, Damm V (2016) Initial opening of the Eurasian Basin, Arctic Ocean. Front Earth Sci 4:91. https://doi.org/10.3389/feart.2016.00091

    Article  Google Scholar 

  9. Brozena JM, Childers VA, Lawver LA, Gahagan LM, Forsberg R, Faleide JI, Eldholm O (2003) New aerogeophysical study of the Eurasian Basin and Lomonossov Ridge: implications for basin development. Geology 31:825–828. https://doi.org/10.1130/G19528.1

    Article  Google Scholar 

  10. Buchan KL, Ernst R (2006) Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard and Franz Josef Land. In Hanski E, Mertanen S, Rämö T, Vuollo J (eds): Dyke swarms—time markers of crustal evolution. Taylor & Francis, London, pp 27–48

    Google Scholar 

  11. Buchan KL, Ernst R (2018) A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Res 58:39–57

    Article  Google Scholar 

  12. Choi SH, Suzuki K, Mukasa SB, Lee J-I, Jung H (2010) Lu–Hf and Re–Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: Implications for mantle–crust coupling. Earth Planet Sci Lett 297(1–2):121–132. https://doi.org/10.1016/j.epsl.2010.06.013

    Article  Google Scholar 

  13. Christidis GE (1998) Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the Islands of Milos and Kimolos, Aegean, Greece. Clays Clay Miner 46:379–399. https://doi.org/10.1346/CCMN.1998.0460403

    Article  Google Scholar 

  14. Conrad T, Hein JR, Paytan A, Clague DA (2017) Formation of FE-Mn crusts within a continental margin environment. Ore Geol Rev 87:25–40

    Article  Google Scholar 

  15. Corfu F, Polteau S, Planke S, Faleide JI, Svensen H, Zayoncheck A, Stolbov N (2013) U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geol Mag 150(6):1127–1135. https://doi.org/10.1017/S0016756813000162

    Article  Google Scholar 

  16. Czuba W, Grad M, Guterch A (1999) Crustal structure of north-western Spitsbergen from DSS measurements. Pol Polar Res 20/2:131–148

    Google Scholar 

  17. DePaolo DJ (1988) Neodymium Isotope Geochemistry. An introduction. Springer, Berlin

    Book  Google Scholar 

  18. Drachev S, Saunders A, 2006. The Early Cretaceous Arctic LIP: Its geodynamic setting and implications for Canada Basin opening. In Scott RA, Thurston DK (eds) Proceedings of the Fourth International Conference on Arctic Margins, Anchorage, OCS Study, MMS 2006-003, U.S. Department of the Interior, pp 216–223

  19. Døssing A, Japsen P, Watts A, Nielsen T, Jokar W, Thybo H, Dahl-Jensen T (2016) Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic. Tectonics 35:257–282

    Article  Google Scholar 

  20. Døssing A, Gaina C, Brozena JM (2017) Building and breaking a large igneous province: An example from the High Arctic. Geophys Res Lett. https://doi.org/10.1002/2016GL072420

    Google Scholar 

  21. Dörr N, Clift P, Lisker F, Spiegel C (2013) Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics 32:473–486

    Article  Google Scholar 

  22. Eiken O (ed) (1994) Seismic atlas of Western Svalbard: a selection of regional seismic transects, Meddelelser, vol 130. Norsk Polarinstitutt, Oslo

    Google Scholar 

  23. Elderfield H, Greaves MJ (1981) Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth Planet Sci Lett 55:163–170

    Article  Google Scholar 

  24. Embry AF, Osadetz KG (1988) Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago. Can J Earth Sci 25:1209–1219

    Article  Google Scholar 

  25. Engen Ø, Faleide JI, Dyreng TK (2008) Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450(1–4):51–69. https://doi.org/10.1016/j.tecto.2008.01.002

    Article  Google Scholar 

  26. Estrada S, Henjes-Kunst F (2004) Volcanism in the Canadian High Arctic related to the opening of the Arctic Ocean. Zeitschrift der Deutschen Geologischen Gesellschaft 154:579–603

    Article  Google Scholar 

  27. Estrada S, Damaske D, Henjes-Kunst F, Schreckenberger B, Oakey GN, Piepjohn K, Eckelmann K, Linnemann U (2016) Multistage Cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge—evidence from aeromagnetic, geochemical and geochronological data. Norw J Geol 96:65–95. https://doi.org/10.17850/njg96-2-03

    Google Scholar 

  28. Evenchick CA, Davis WJ, Bédard JH, Hayward N, Friedman RM (2015) Evidence for protracted High Arctic large igneous province magmatism in the central Sverdrup Basin from stratigraphy, geochronology, and paleodepths of saucer-shaped sills. Geol Soc Am Bull 127:1366–1390. https://doi.org/10.1130/B31190.1

    Article  Google Scholar 

  29. Feden RH, Vogt PR, Fleming HS (1979) Magnetic and bathymetric evidence for the ‘Yermak Hot Spot’ northwest of Svalbard in the Arctic Basin, Earth planet. Sci Lett 44:18–38

    Google Scholar 

  30. Geissler WH, Jokat W (2004) Seismic sedimentary structure of the northern Svalbard continental margin and constraints on its crustal fabric based on gravity data. Geoph J Int 158:50–66

    Article  Google Scholar 

  31. Geissler WH, Jokat W, Brekke H (2011) The Yermak Plateau in the Arctic Ocean in the light of reflection seismic data-implication for its tectonic and sedimentary evolution. Geophys J Int 187(3):1334–1362. https://doi.org/10.1111/j.1365-246X.2011.05197.x

    Article  Google Scholar 

  32. Geissler WH, Gebhardt AC, Schmidt-Aursch MC (2014) The Hinlopen/ Yermak Megaslide (HYM)—Understanding an exceptional submarine landslide, its consequences and relation to the deep structure of the Sophia Basin (Sophia-HYM). Cruise No. MSM31—August 17–September 18, 2013—Tromsø (Norway)—Bremen (Deutschland), in MARIA S. MERIAN-Berichte, MSM31, Bremen, pp 1–70. https://doi.org/10.2312/cr_msm31. MARIA S. MERIAN-Berichte von DFG-Senatskommission für Ozeanographie

  33. Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW, Michael PJ (2008) Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature 453(7191):89–93

    Article  Google Scholar 

  34. Griffin WL, Nikolic N, O’Reilly SY, Pearson NJ (2012) Coupling, decoupling and metasomatism: Evolution of crust–mantle relationships beneath NW Spitsbergen. Lithos 149:115–135

    Article  Google Scholar 

  35. Hein JR, Koschinsky A (2014) Deep-ocean ferromanganese crusts and nodules. Treat Geochem 13:273–291. https://doi.org/10.1016/b978-0-08-095975-7.01111-6

    Article  Google Scholar 

  36. Hein JR, Petersen S (2013) The geology of cobalt-rich ferromanganese crusts. In: Baker E, Beaudoin Y (eds) Deep sea minerals: cobalt-rich ferromanganese crusts, a physical, biological, environmental, and technical review. Chapter: 1. Secretariat of the Pacific Community, pp 7–14

  37. Hein JR, Conrad T, Staudigel H (2010) Seamount mineral deposits: a source of rare metals for high-technology industries. Oceanography 23:184–189

    Article  Google Scholar 

  38. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14. https://doi.org/10.1016/j.oregeorev.2012.12.001

    Article  Google Scholar 

  39. Hellman FJ, Gee DG, Witt-Nilsson P (2001) Late archean basement in the Bangenhuken Complex of Nordbreen Nappe, western Ny-Friesland, Svalbard. Polar Res 20:49–59

    Article  Google Scholar 

  40. Ionov D (1998) Trace element composition of mantle derived carbonates and coexisting phases in peridotite xenoliths from alkali basalts. J Petrol 39(11/12):1931–1941

    Article  Google Scholar 

  41. Ionov DA, O’Reilly SY, Kopylova MG, Genshaft YS (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace element residence. Contrib Miner Petrol 125:375–392

    Article  Google Scholar 

  42. Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanism and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43(12):2219–2250

    Article  Google Scholar 

  43. Jackson HR, Johnson GL, Sundvor E, Myhre AM (1984) The Yermak Plateau: formed at a triple junction. J Geophys Res 89:3223–3232

    Article  Google Scholar 

  44. Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  45. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302. https://doi.org/10.1111/j.1751-908X.2005.tb00901.x

    Article  Google Scholar 

  46. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res. https://doi.org/10.1111/j.1751-908X.2011.00120

    Google Scholar 

  47. Jokat W, Ickrath M, O’Connor J (2013) Seismic transect across the Lomonosov and Mendeleev Ridges: constraints on the geological evolution of the Amerasia Basin, Arctic Ocean. Geophys Res Lett 40(19):5047–5051. https://doi.org/10.1002/grl.50975

    Article  Google Scholar 

  48. Jokat W, Lehmann P, Damaske D, Bradley Nelson J (2016) Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: Constraints for the rift/drift history between Greenland and Svalbard since the Eocene. Tectonophysics 691(Part A):98–109, https://doi.org/10.1016/j.tecto.2015.12.002

    Article  Google Scholar 

  49. Karasik AM (1968) Magnetic anomalies of the Gakkel Ridge and origin of the Eurasia Subbasin of the Arctic Ocean, Geophys. Methods Prospect Arctic 5:8–19

    Google Scholar 

  50. Kharin GS, Eroshenko DV (2013) Peculiarities of the magmatism and tectonics of the Knipovich Ridge. Oceanology 53:352–364. https://doi.org/10.1134/S0001437013020082

    Article  Google Scholar 

  51. Kingsbury CG, Ernst RE, Cousens BL, Williamson M-C (2016) The High Arctic LIP in Canada: trace element and Sm–Nd isotopic evidence for the role of mantle heterogeneity and crustal assimilation. Norw J Geol 96:97–118. https://doi.org/10.17850/njg96-2-02

    Google Scholar 

  52. Klitzke P, Faleide JI, Scheck-Wenderoth M, Sippel J (2015) A lithosphere-scale structural model of the Barents Sea and Kara Sea region. Solid Earth 6:153–172

    Article  Google Scholar 

  53. Lanphere MA, Dalrymple GB (2000) First-principles calibration of ar tracers: implications for ages of 40Ar/39Ar fluence monitors. US Geol Surv Prof Paper 1621:10 pp

    Google Scholar 

  54. Ludwig KR (2012) Isoplot 3.75: a geochronological toolkit for Microsoft Excel. Spec. Publ., no. 5, Berkeley Geochronology Center, Berkeley

    Google Scholar 

  55. Maher HDJ (2001) Manifestations of the cretaceous high arctic large igneous province in Svalbard. J Geol 109:91–104

    Article  Google Scholar 

  56. Menuge J, Pedersen R-B, Furnes H (1989) Seawater alteration of the Karmø Ophiolite Complex, SW Norway: Nd and Sr isotope evidence. Nor Geol Tidsskr 69:191–200

    Google Scholar 

  57. Nauret F, Snow JE, Hellebrand E, Weis D (2011) Geochemical composition of k-rich lavas from the Lena trough (Arctic ocean). J Petrol 52:1185–1206. https://doi.org/10.1093/petrology/egr024

    Article  Google Scholar 

  58. Nejbert K, Krajewski KP, Dubińska E, Pécskay Z (2011) Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Res. 30. https://doi.org/10.3402/polar.v30i0.7306

  59. Ntaflos T, Richter W (2003) Geochemical constraints on the origin of the Continental Flood Basalt magmatism in Franz Josef Land, Arctic Russia. Eur J Miner 15:649–663. https://doi.org/10.1127/0935-1221/2003/0015-0649

    Article  Google Scholar 

  60. Prestvik T (1978) Cenozoic plateau lavas of Spitsbergen—a geochemical study, Norsk Polorinst. Arbok 1977:120–143

    Google Scholar 

  61. Riefstahl F, Estrada S, Geissler WH, Jokat W, Stein R, Kämpf H, Dulski P, Naumann R, Spiegel C (2013) Provenance and characteristics of rocks from the Yermak Plateau, Arctic Ocean: Petrographic, geochemical and geochronological constraints. Mar Geol 343:125–145. https://doi.org/10.1016/j.margeo.2013.06.009

    Article  Google Scholar 

  62. Saltus RW, Miller EL, Gaina C, Brown PJ (2011) Regional magnetic domains of the Circum-Arctic: a framework for geodynamic interpretation. In Spencer AM, Embry AF, Gautier DL, Stoupakova AV, Sorensen K (eds) Arctic petroleum geology, vol 35. The Geological Society of London Memoirs, London, pp 49–60. https://doi.org/10.1144/M35.4

    Google Scholar 

  63. Schmidt-Aursch MC, Jokat W (2016) 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean). Tectonophysics 691(Part A):85–97, https://doi.org/10.1016/j.tecto.2016.03.021

    Article  Google Scholar 

  64. Shikazono N (2003) Chapter 1 Miocene-pliocene hydrothermal ore deposits in and around the Japanese Islands. In: Geochemistry NSBT-D (ed) Geochemical and tectonic evolution of arc-backarc hydrothermal systems implication for the origin of kuroko and epithermal vein-type mineralizations and the global geochemical cycle. Elsevier, Amsterdam, pp 1–294. https://doi.org/10.1016/S0921-3198(03)80002-9

  65. Skjelkvåle B-L, Amundsen HEF, O’Reilly SY, Griffin WL, Gjelsvik T (1989) A Primitive alkali basaltic stratovolcano and associated eruptive centres, northwestern spitsbergen: volcanology and tectonic significance. J Volcanol Geoth Res 37:1–19

    Article  Google Scholar 

  66. Staudigel H, Plank T, White WM, Schmincke HU (1996) Geochemical fluxes during seafloor alteration of the basaltic upper crust: DSDP sites 417 and 418. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, Geophys. Monogr. Ser. AGU, Washington, D.C., pp 19–38

    Google Scholar 

  67. Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  Google Scholar 

  68. Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: Quantitative constraints. Geochem Geophys Geosyst 4(3):8003. https://doi.org/10.1029/2001GC000223

    Article  Google Scholar 

  69. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  70. Sushchevskaya NM, Evdokimov AN, Belyatsky BV, Maslov VA, Kuz’min DV (2008) Conditions of Quaternary magmatism at Spitsbergen Island. Geochem Int 46:1–16. https://doi.org/10.1007/s11476-008-1001-2

    Article  Google Scholar 

  71. Sushchevskaya NM, Korago Ea, Belyatsky BV, Sirotkin aN (2009) Geochemistry of Neogene magmatism at Spitsbergen Island. Geochem Int 47:966–978. https://doi.org/10.1134/S0016702909100024

    Article  Google Scholar 

  72. Sushchevskaya NM, Peyve AA, Belyatsky BV (2010) Conditions of formations of slightly enriched tholeiites in the northern Knipovich Ridge. Geochem Int 48:321–337. https://doi.org/10.1134/S0016702910040014

    Article  Google Scholar 

  73. Sushchevskaya NM, Peyve AA, Belyatsky BV (2011) Magmatism of the junction region of the Knipovich and Mohns Ridges (Polar Atlantic): results of cruise 25 of the R/V “Akademik Nikolai Strakhov”. Geochem Int 49(1):31–45. https://doi.org/10.1134/s0016702911010101

    Article  Google Scholar 

  74. Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Evidence for extreme climatic warmth from Late Cretaceous arctic vertebrates. Science 282:2241–2243

    Article  Google Scholar 

  75. Tegner C, Storey M, Holm PM, Thórarinsson SB, Zhao X, Lo CH, Knudsen MF (2011) Magmatism and Eurekan deformation in the high arctic large igneous province: 40Ar-39Ar age of Kap Washington Group volcanics, North Greenland. Earth Planet Sci Lett 303:203–214. https://doi.org/10.1016/j.epsl.2010.12.047

    Article  Google Scholar 

  76. Treiman AH (2012) Eruption age of the Sverrefjellet volcano, Spitsbergen Island, Norway. Polar Res 31(1):17320. https://doi.org/10.3402/polar.v31i0.17320

    Article  Google Scholar 

  77. Verma SP (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr–Nd–Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochem J 26:159–177

    Article  Google Scholar 

  78. Vogt PR, Taylor PT, Kovacs LC, Johnson GL (1979) Detailed aeromagnetic investigations of the Arctic Basin. J Geophys Res 84:1071–1089

    Article  Google Scholar 

  79. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. Eos Trans AGU 94(45):409–420

    Article  Google Scholar 

  80. Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geoth Res 164:193–204

    Article  Google Scholar 

  81. Winter BL, Johnson CM, Clark DL (1997) Geochemical constraints on the formation of Late Cenozoic ferromanganese micronodules from the central Arctic Ocean. Mar Geol 138:149–169

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the master M. Guenther, officers and crew of the RV Maria S. Merian as well as MSM31 shipboard scientific party for their help during basement sampling. We thank the German Research Foundation, Alfred Wegener Institute Helmholtz Centre for Polar Research Bremerhaven and GEOMAR Helmholtz Centre for Ocean Research Kiel for funding the cruise. Thanks also go to Christian Reichert (BGR) for support with providing the chain dredge and Guillaume Jacques (BGR) for the Rb/Sr and Sm/Nd isotope analyses. The authors would like to thank Emerson E&P Software, Emerson Automation Solutions, for providing licenses in the scope of the Emerson Academic Program. Maps were created with Generic Mapping Tools [79]. We thank the editor Henning Bauch and the anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram H. Geissler.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 Results of groundmass analyses and standard analyses by laser ablation ICPMS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geissler, W.H., Estrada, S., Riefstahl, F. et al. Middle Miocene magmatic activity in the Sophia Basin, Arctic Ocean—evidence from dredged basalt at the flanks of Mosby Seamount. Arktos 5, 31–48 (2019). https://doi.org/10.1007/s41063-019-00066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-019-00066-8

Keywords

Navigation