Skip to main content

Advertisement

Log in

Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The systematics of the Hypochaeridinae subtribe was re-evaluated based on a combination of published and new molecular data. Newly found clades were additionally characterized using published and new phytochemical data. In addition to flavonoids and sesquiterpene lactones, which had been reviewed recently as chemosystematic markers in the Cichorieae, we analysed the reported occurrences of caffeic acid derivatives and their potential as chemosystematic markers. Our molecular results required further changes in the systematics of the genus Leontodon. Based on previous molecular data, Leontodon s.l.—i.e. including sections Asterothrix, Leontodon, Thrincia, Kalbfussia, and Oporinia (Widder 1975)—had been split into the genera Leontodon s.str. (sections Asterothrix, Leontodon, and Thrincia) and Scorzoneroides (sections Kalbfussia and Oporinia). Instead of splitting Leontodon into even a higher number of segregate genera we propose to include Hedypnois into Leontodon s.str. and here into section Leontodon. Moreover, sections Asterothrix and Leontodon should be merged into a single section Leontodon. The newly defined genus Leontodon is characterised by the unique occurrence of hydroxyhypocretenolides. The monophyly of the genus Hypochaeris is neither supported nor contradicted and potentially comprises two separate molecular clades. The clade Hypochaeris I comprises the majority of the European and Mediterranean as well as all South American taxa of Hypochaeris s.l. while the clade Hypochaeris II encompasses only H. achyrophorus L., H. glabra L., H. laevigata Benth. & Hook.f., and H. radicata L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babcock, E. B. (1947a). The Genus Crepis, part one, The Taxonomy, Phylogeny. Distribution and Evolution of Crepis: Universtiy of California Publications. 21.

    Google Scholar 

  • Babcock, E. B. (1947b). The Genus Crepis, part two. Systematic Treatment: University of California Publications. 22.

    Google Scholar 

  • Bailly, F., & Cotelle, P. (2005). Anti-HIV activities of natural antioxidant caffeic acid derivatives: toward an antiviral supplement diet. Current Medincinal Chemistry, 12, 1811–1818.

    Article  CAS  Google Scholar 

  • Blattner, F. R. (1999). Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques, 27, 1180–1186.

    PubMed  CAS  Google Scholar 

  • Carr, G. D., King, R. M., Powell, A. M., & Robinson, H. (1999). Chromosome numbers in Compositae, XVIII. American Journal of Botany, 896, 1003–1013.

    Article  Google Scholar 

  • Cerbah, M., Souza-Chies, T., Jubier, M. F., Lejeune, B., & Siljak-Yakovlev, S. (1998). Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: Inference for chromosomal evolution. Molecular Biology and Evolution, 15, 345–354.

    PubMed  CAS  Google Scholar 

  • Enke, N., Fuchs, J., & Gemeinholzer, B. (2011). Shrinking genomes? Evidence from genome size variation in Crepis L. (Cichorieae, Compositae). Plant Biology, 13, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Enke, N., & Gemeinholzer, B. (2008). Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon, 57, 756–768.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Greuter, W., Gutermann, W., & Talavera, S. (2006). A preliminary conspectus of Scorzoneroides (Compositae, Cichorieae) with validation of the required new names. Willdenowia, 36, 689–692.

    Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hsiao, C., Chatterton, N. J., Asay, K. H., & Jensen, K. B. (1995). Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theoretical and Applied Genetics, 90, 389–398.

    Article  CAS  Google Scholar 

  • ICN International Cichorieae Network, General editors Hand, R., Kilian, N., & Raab-Straube, E. von (2009+). Cichorieae Portal. Published at http://wp6-chichorieae-e-taxonomy.eu/portal/ [accessed 15.03.2011]

  • Izuzquiza, A., & Feliner, G. N. (1991). Cytotaxonomic notes on the genus Leontodon (Asteraceae, Hypochoeridinae). Willdenowia, 21, 215–224.

    Google Scholar 

  • Kilian, N., Gemeinholzer, B., & Lack, H. W. (2009). Tribe Cichorieae Lam. & DC. In V. A. Funk, A. Susanna, T. Stuessy, & R. Bayer (Eds.), Systematics, Evolution and Biogeography of the Compositae. Austria: IAPT, Vienna.

    Google Scholar 

  • Kisiel, W. (1994). Hypocretenolides from Crepis aurea. Fitoterapia, 65, 381.

    CAS  Google Scholar 

  • Lippi, M. M., & Garbari, F. (2004). Leontodon villarsii (Willd.) Loisel. and L. rosani (Ten.) DC. (Asteraceae): nomenclatural, palynological, karyological, and micromorphological aspects. Plant Biosystems, 138, 165–174.

    Article  Google Scholar 

  • Nordenstam, B. (1971). Cytogeography of the genus Hedypnois (Compositae). Botaniska Notiser, 124, 483–489.

    Google Scholar 

  • Pittoni, H. (1974). Behaarung und Chromosomenzahlen sternhaariger Leontodon-Sippen. Phyton (Austria), 16, 165–188.

    Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A. (2008). Figtree v1.2.2. Insitute of Evolutionary Biology, University of Edinburgh. Available at http://tree.bio.ed.ac.uk/software/figtree

  • Rios, J. L., Giner, R. M., Cuellar, M. J., Recio, M. C., & Serrano, A. (1992). Phenolics from some species of subtribe Leontodontinae. Planta Medica, 58(Suppl. 1), A701.

    Article  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, R., Gutermann, W., Stuessy, T. F., Ruas, C. F., Lack, H. W., Tremetsberger, K., Talavera, S., Hermanowski, B., & Ehrendorfer, F. (2006). Molecular phylogenetics reveals Leontodon (Asteraceae, Lactuceae) to be diphyletic. American Journal of Botany, 93, 1193–1205.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, R., Stuessy, T. F., Tremetsberger, K., Baeza, C. M., & Siljak-Yakovlev, S. (2003). Phylogenetic relationships among species of Hypochaeris (Asteraceae, Cichorieae) based on ITS, plastid trnL intron, trnL-F spacer, and matK sequences. American Journal of Botany, 90, 496–507.

    Article  PubMed  CAS  Google Scholar 

  • Sareedenchai, V., & Zidorn, C. (2010). Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochemical Systematics and Ecology, 38, 935–957.

    Article  CAS  Google Scholar 

  • Siljak-Yakovlev, S., Bartoli, A., Roitman, G., Barghi, N., & Mugnier, C. (1994). Etude caryologique de trois espèces d’Hypochaeris originaires d’Argentine: H. chiliensis (H. B. K.) Hieron, H. megapotamica Cabr. et H. microcephala (Sch. Bip.) Cabr. var. albiflora (O.K.) Cabr. Canadian Journal of Botany, 72, 1496–1502.

    Article  Google Scholar 

  • Stamatakis, A. (2006). RAXML-VI-HPC: Maximum-Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 75, 758–771.

    Article  Google Scholar 

  • Stebbins, G. L., Jenkins, J. A., & Walters, M. S. (1953). Chromosomes and phylogeny in the Compositae, tribe Chichorieae. University of California Publications in Botany, 26, 401–429.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*: Phylogenetic analyses using parsimony (* and other methods), version 4.0beta. Sunderland: Sinauer.

    Google Scholar 

  • Tavaré, S. (1986). Some probabilistic and statistical problems in the analsyis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.

    Google Scholar 

  • Tremetsberger, K., Weiss-Schneeweiss, H., Stuessy, T., Samuel, R., Kadlec, G., Angeles Ortiz, M., & Talavera, S. (2005). Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Chichorieae). Molecular Phylogenetics and Evolution, 35, 102–116.

    Article  PubMed  CAS  Google Scholar 

  • Tzevelev, N. N., & Fedorov, A. A. (2003). Flora of Russia: The European Part and Bordering Regions. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Weiss, H., Stuessy, T. F., Grau, J., & Baeza, C. M. (2003). Chromosome reports from South American Hypochaeris (Asteraceae). Annals of the Missouri Botanical Garden, 90, 56–63.

    Article  Google Scholar 

  • Weiss-Schneeweiss, H., Stuessy, T. F., Siljak-Yakovlev, S., Baeza, C. M., & Parker, J. (2003). Karyotype evolution in South American species of Hypochaeris (Asteraceae, Lactuceae). Plant Systematics and Evolution, 241, 171–184.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Widder, F. J. (1975). Die Gliederung der Gattung Leontodon. Phyton (Austria), 17, 23–29.

    Google Scholar 

  • Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Zidorn, C. (1998). Phytochemie, Pharmakologie, Chemotaxonomie und Morphologie von Leontodon hispidus L. s.l. Shaker Verlag, Aachen. Also as PhD thesis. Innbruck: University of Innsbruck.

    Google Scholar 

  • Zidorn, C. (2006). Sesquiterpenoids as chemosystematic markers in the subtribe Hypochaeridinae (Lactuceae, Asteraceae). Biochemical Systematics and Ecology, 34, 144–159.

    Article  CAS  Google Scholar 

  • Zidorn, C. (2008a). Plant Chemosystematics. In M. Waksmunzka-Hajnos, J. Sherma, & T. Kowalska (Eds.), Thin Layer Chromatography in Phytochemistry (pp. 77–101). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Zidorn, C. (2008b). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270–2296.

    Article  PubMed  CAS  Google Scholar 

  • Zidorn, C., Gottschlich, G., & Stuppner, H. (2002). Chemosystematic investigations on phenolics from flowerheads of central European taxa of Hieracium sensu lato (Asteraceae). Plant Systematics and Evolution, 231, 39–58.

    Article  CAS  Google Scholar 

  • Zidorn, C., Pschorr, S., Ellmerer, E. P., & Stuppner, H. (2006). Occurrence of equisetumpyrone and other phenolics in Leontodon crispus. Biochemical Systematics and Ecology, 34, 185–187.

    Article  CAS  Google Scholar 

  • Zidorn, C., Schubert, B., & Stuppner, H. (2005). Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochemical Systematics and Ecology, 33, 855–872.

    Article  CAS  Google Scholar 

  • Zidorn, C., Schubert, B., & Stuppner, H. (2008). Phenolics as chemosystematics markers in and for the genus Crepis (Asteraceae, Cichorieae). Scientia Pharmaceutica, 76, 743–750.

    Article  CAS  Google Scholar 

  • Zidorn, C., Spitaler, R., Grass, S., Mader, J., Müller, T., Ellmerer, E. P., & Stuppner, H. (2007). Four new hypocretenolides (guaian-12,5-olides) from Leontodon rosani (Asteraceae, Cichorieae). Biochemical Systematics and Ecology, 35, 301–307.

    Article  CAS  Google Scholar 

  • Zidorn, C., & Stuppner, H. (2001). Chemosystematics of taxa from the Leontodon section Oporinia. Biochemical Systematics and Ecology, 29, 827–837.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Renate Spitaler (Innsbruck) and Jonas Zimmermann (Berlin) for proof reading, the latter also for help with the molecular work; Michaela Posch, Birthe Schubert, and Judith Strauch (all Innsbruck) for phytochemical assistance; Serhat Cicek (Innsbruck) for HPLC/MS measurements; and Eckhard von Raab-Straube, Ralf Hand and Wolf-Henning Kusber (all Berlin) for advice with regards to botanical nomenclature. This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF, project P20278-B16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neela Enke or Christian Zidorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enke, N., Gemeinholzer, B. & Zidorn, C. Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae). Org Divers Evol 12, 1–16 (2012). https://doi.org/10.1007/s13127-011-0064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-011-0064-0

Keywords

Navigation